Tìm tất cả các số tự nhiên k để cho đa thức f(k)=k^3+2k^2+15 chia hết cho nhị thức g(k)=k+3
giúp mk nha thanks các bạn mk sẽ vote cho
:)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(k) = k3 + 2k2 + 15
= (k3 + 9k2 + 27k + 27) - (7k2 + 27k + 12)
= (k + 3)3 - (7k2 + 27k + 18) + 6
= (k + 3)3 - (7k2 + 21k + 6k + 18) + 6
= (k + 3)3 - [7k(k + 3) + 6(k + 3)] + 6
= (k + 3)3 - (7k + 6)(k + 3) + 6
= (k + 3)[(k + 3)2 - 7k - 6) + 6
Vì (k + 3)[(k + 3)2 - 7k - 6) ⋮⋮k + 3
=> f(k) ⋮⋮g(k) khi 6 ⋮k+3⋮k+3
=> k+3∈Ư(6)k+3∈Ư(6)(k là số tự nhiên)
=> k+3∈{3;6}k+3∈{3;6}(Vì k ≥≥ 0 => k + 3 ≥≥ 3)
=> k∈{0;3}k∈{0;3}
Vậy k∈{0;3}k∈{0;3}thì f(k) ⋮⋮g(k)
=>k^3+3k^2-k^2+9+6 chia hết cho k+3
=>\(k+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(k\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Công Thức Và Cách Tính Diện Tích Hình Lập Phương
Diện tích hình lập phương được chia ra hai dạng bao gồm diện tích xung quanh và diện tích toàn phần. Trong đó diện tích xung quanh bằng diện tích một mặt nhân với 4. Trong khi đó diện tích toàn phần bằng diện tích một một mặt nhân với 6.
- Công Thức Tính Diện Tích Toàn Phần Hình Lập Phương
S = 6 x a²
Trong đó:
+ a: các cạnh của hình lập phương.
- Công Thức Tính Diện Tích Xung Quanh Hình Lập Phương
S = 4 x a²
Công Thức Và Cách Tính Diện Tích Hình Lập Phương
Diện tích hình lập phương được chia ra hai dạng bao gồm diện tích xung quanh và diện tích toàn phần. Trong đó diện tích xung quanh bằng diện tích một mặt nhân với 4. Trong khi đó diện tích toàn phần bằng diện tích một một mặt nhân với 6.
- Công Thức Tính Diện Tích Toàn Phần Hình Lập Phương
S = 6 x a²
Trong đó:
+ a: các cạnh của hình lập phương.
- Công Thức Tính Diện Tích Xung Quanh Hình Lập Phương
S = 4 x a²
\(a,f\left(x\right):g\left(x\right)=\left(3x^4+9x^3+7x+2\right):\left(x+3\right)\\ =\left[3x^3\left(x+3\right)+7\left(x+3\right)-19\right]:\left(x+3\right)\\ =\left[\left(3x^3+7\right)\left(x+3\right)-19\right]:\left(x+3\right)\\ =3x^3+7.dư.19\)
\(c,\) Để \(k\left(x\right)⋮g\left(x\right)\Leftrightarrow-x^3-5x+2m=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow-\left(-3\right)^3-5\left(-3\right)+2m=0\\ \Leftrightarrow27+15+2m=0\\ \Leftrightarrow2m=-42\\ \Leftrightarrow m=-21\)
Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$
$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$
Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$
b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$
Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$
$\Leftrightarrow x+2$ là ước của $7$
$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$
$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$
c.
Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$
$\Leftrightarrow -2(-2)^3+(-2)-m=0$
$\Leftrightarrow 14-m=0$
$\Leftrightarrow m=14$
Ta có f(k) = k3 + 2k2 + 15
= (k3 + 9k2 + 27k + 27) - (7k2 + 27k + 12)
= (k + 3)3 - (7k2 + 27k + 18) + 6
= (k + 3)3 - (7k2 + 21k + 6k + 18) + 6
= (k + 3)3 - [7k(k + 3) + 6(k + 3)] + 6
= (k + 3)3 - (7k + 6)(k + 3) + 6
= (k + 3)[(k + 3)2 - 7k - 6) + 6
Vì (k + 3)[(k + 3)2 - 7k - 6) \(⋮\)k + 3
=> f(k) \(⋮\)g(k) khi 6 \(⋮k+3\)
=> \(k+3\inƯ\left(6\right)\)(k là số tự nhiên)
=> \(k+3\in\left\{3;6\right\}\)(Vì k \(\ge\) 0 => k + 3 \(\ge\) 3)
=> \(k\in\left\{0;3\right\}\)
Vậy \(k\in\left\{0;3\right\}\)thì f(k) \(⋮\)g(k)