chứng minh 5^2009+5^2011 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
chia hết cho 2010
+ 1) + ( – 1)
= (2009 + 1)( - …) + (2011 – 1)( + …)
= 2010( + …) chia hết cho 2010
\(2011\equiv1\left(mod2010\right)\Rightarrow2011^{2009}\equiv1\left(mod2010\right)\)
\(2009\equiv-1\left(mod2010\right)\Rightarrow2009^{2011}\equiv-1\left(mod2010\right)\)
\(\Rightarrow2009^{2011}+2011^{2009}\equiv0\left(mod2010\right)\Rightarrow2009^{2011}+2011^{2009}⋮2010\)
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
A = 20102011 - 20102010
A = 20102010 .( 2010 - 1)
A = 20102010.2009
2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009
A = 3 + 33 + 35 + 37 + 39 + ... + 32009
A = ( 3 + 33 + 35 ) + ( 37 + 39 + 311 ) + ... + ( 32005 + 32007 + 32009 )
A = 273 + 36 . ( 3 + 33 +35 ) + ... + 32004 . ( 3 + 33 + 35 )
A = 273 + 36 . 273 + ... + 32004 . 273
A = 273 . ( 1 + 36 + ... + 32004 )
A = 13 . 21 . ( 1 + 36 + ... + 32004 ) chia hết cho 13
\(A=3+3^3+3^5+...+3^{2005}+3^{2007}+3^{2009}\)
\(A=3\cdot\left(1+3^2+3^4\right)+...+3^{2005}\cdot\left(1+3^2+3^4\right)\)
\(A=3\cdot91+...+3^{2005}\cdot91\)
\(A=91\cdot\left(3+...+3^{2005}\right)\)
\(A=13\cdot7\cdot\left(3+...+3^{2005}\right)⋮13\left(đpcm\right)\)
A=3+3^3+3^5+....+3^2009 (1)
9A=3^3+3^5+3^7+...+3^2011 (2)
trừ vế với vế của (2) cho (1)
9A-A=(3^3+3^5+...+3^2011)-(3+3^3+...+3^2009)
8A=3^2011-3
A=\(\frac{3^{2011}-3}{8}\)
câu 1 : \(147.13-48.13+13\)
\(=13.\left(147-48+1\right)\)
\(=13.100\)
\(=1300\)