K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

a) \(ĐKXĐ:x\ge0\)

\(x=\sqrt{x}\)\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)( thỏa mãn )

Vậy \(x=0\)hoặc \(x=1\)

b) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

\(\frac{4}{x-1}+\frac{2}{x}=\frac{3x+4}{x^2-x}\)\(\Leftrightarrow\frac{4x}{x\left(x-1\right)}+\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{3x+4}{x\left(x-1\right)}\)

\(\Rightarrow4x+2\left(x-1\right)=3x+4\)

\(\Leftrightarrow4x+2x-2=3x+4\)

\(\Leftrightarrow4x+2x-3x=4+2\)

\(\Leftrightarrow3x=6\)\(\Leftrightarrow x=2\)( thỏa mãn )

Vậy \(x=2\)

22 tháng 9 2021

a) \(\sqrt{x^2-x-4}=\sqrt{x-1}\)

\(x^2-x-4=x-1\)

\(x^2-x-4-x+1=0\)

\(x^2-2x-5=0\)

\(\left(x^2-2.x.1+1^2\right)-6=0\)

\(\left(x-1\right)^2=6\)

\(\left\{{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\)         ⇒\(\left\{{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

\(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = x + k2\pi \\2x + \frac{\pi }{4} = \pi  - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\3x = \pi  - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.;k \in Z\)

b)

\(\begin{array}{l}\sin 2x = \cos 3x\\ \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 2x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x =  - \left( {\frac{\pi }{2} - 2x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)

c)

\(\begin{array}{l}{\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x =  - \cos \left( {x + \frac{\pi }{6}} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\pi  - \left( {x + \frac{\pi }{6}} \right)} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right)\end{array} \right.\end{array}\)

Với \(\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x =  - \left( {x + \frac{\pi }{6}} \right) + k2\pi \\2x = x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\\x = \frac{\pi }{6} + k2\pi \end{array} \right.\)

Với \(\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right) \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{6} - x + k2\pi \\2x =  - \left( {\frac{{5\pi }}{6} - x} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{5\pi }}{6} + k2\pi \\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)

4 tháng 7 2017

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

4 tháng 7 2017

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

NV
19 tháng 4 2019

a/ ĐK: \(3x^2-10x+6\ge0\)

Nhận thấy \(x=0\) không phải nghiệm

\(\Leftrightarrow2\left(x^2+4\right)=\left(3x^2-10x+6\right)^2\)

\(\Leftrightarrow2\left(x^2+\frac{4}{x^2}\right)=\left(3x-10+\frac{6}{x}\right)^2=\left(3\left(x+\frac{2}{x}\right)-10\right)^2\)

Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)

\(\Leftrightarrow2\left(a^2-4\right)=\left(3a-10\right)^2\)

\(\Leftrightarrow7a^2-60a+108=0\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=6\\x+\frac{2}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+2=0\\7x^2-18x+14=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)

NV
19 tháng 4 2019

b/ \(x\ge-\frac{1}{4}\)

Đặt \(\sqrt{x+\frac{1}{4}}=a\ge0\Rightarrow x=a^2-\frac{1}{4}\)

\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{a^2-\frac{1}{4}+\frac{1}{2}+a}=2\)

\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{\frac{1}{4}\left(4a^2+4a+1\right)}=2\)

\(\Leftrightarrow a^2-\frac{1}{4}+\frac{1}{2}\left(2a+1\right)=2\)

\(\Leftrightarrow4a^2+4a-7=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{-1+2\sqrt{2}}{2}\\a=\frac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+\frac{1}{4}}=\frac{-1+2\sqrt{2}}{2}\Rightarrow x=2-\sqrt{2}\)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1