K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

a.

\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)

\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))

\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)

b.

\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)

\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)

\(\Leftrightarrow11y^2+2y-9\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)

NV
9 tháng 7 2021

c.

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)

\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)

\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)

Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:

\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)

\(\Leftrightarrow y^2+8y-36\le0\)

\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa

\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\) \

 Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) =  - \sin 2x - \tan 2x =  - \left( {\sin 2x + \tan 2x} \right) =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)

Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) =  - \sin x.\cos 2x =  - f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ

d) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(y = \cos x\)

\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)

Suy ra hàm số \(y = \cos x\) là hàm số chẵn

Vậy ta chọn đáp án C

11 tháng 4 2020

em không hiểu dòng đầu lắm tại sao lại ra cos2(x+y+z) được thế ạ

NV
11 tháng 4 2020

\(cosa=cos\left(2\pi-a\right)\)

\(t=2\pi-\left(x+y+z\right)\) nên...

tư mã chiêu

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

8 tháng 4 2022

Đây nè bn:

undefinedundefined

8 tháng 4 2022

ơ bạn :\(\dfrac{cos\left(x+y\right)+cosx}{cos\left(x+y\right)-cosx}=\dfrac{2cos\left(\dfrac{2x+y}{2}\right).cos\left(\dfrac{y}{2}\right)}{-2sin\left(\dfrac{2x+y}{2}\right).sin\left(\dfrac{y}{2}\right)}=-2.cot\left(\dfrac{2x+y}{2}\right).cot\left(\dfrac{y}{2}\right)\) L không thể bẳng 0 được

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Đề lỗi font. Bạn cần chỉnh sửa lại bằng công thức toán để được hỗ trợ tốt hơn.

 

Đề bị lỗi rồi bạn ơi