K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(a^4+a^3b+ab^3+b^4\)

\(=a^3\left(a+b\right)+b^3\left(a+b\right)\)

\(=\left(a+b\right)\left(a^3+b^3\right)\)

\(=\left(a+b\right)^2\cdot\left(a^2-ab+b^2\right)\)

Ta có: \(a^2-ab+b^2\)

\(=a^2-2\cdot a\cdot\frac{1}{2}b+\frac{1}{4}b^2+\frac{3}{4}b^2\)

\(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

Ta có: \(\left(a-\frac{1}{2}b\right)^2\ge0\forall a,b\)

\(\frac{3}{4}b^2\ge0\forall b\)

Do đó: \(\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)

\(\Leftrightarrow a^2-ab+b^2\ge0\forall a,b\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b\right)^2\ge0\forall a,b\)(Vì \(\left(a+b\right)^2\ge0\forall a,b\))

hay \(a^4+a^3b+ab^3+b^4\ge0\forall a,b\)(đpcm)

10 tháng 4 2021

\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

10 tháng 4 2021

Áp dụng BĐT cosi với 2 số không âm:

`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`

Hoàn toàn tương tự:

`b^4+a^4+a^4+a^4>=4a^3b`

`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`

`<=>4(a^4+b^4)>=4(ab^3+a^3b)`

`<=>a^4+b^4>=ab^3+a^3b`

a:Sửa đề:  \(a^2-4ab+4b^2\)

\(=a^2-2\cdot a\cdot2b+4b^2\)

\(=\left(a-2b\right)^2\ge0\)(luôn đúng)

b: \(-2a^2+a-1\)

\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)

\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)

\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)

4 tháng 10 2017

theo bài ta có:

a + b + c = 0

=> a = -(b + c)

=> a2 = [-(b + c)]2

=> a2 = b2 + 2bc + c2

=> a2 - b2 - c2 = 2bc

=> ( a2 - b2 - c2)2 = (2bc)2

=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2

=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

=> 2(a4 + b4 + c4) = 1

=> a4 + b4 + c4 = \(\dfrac{1}{2}\)

4 tháng 10 2017

Đề viết sai rồi bạn

Với a+b+c=0

CMR : a4+b4+c4=2(ab+bc+ac)2

15 tháng 10 2018

\(M=\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a^3-b^3\right)-\left(a^3+b^3\right)\)

\(=-2b^3\)

Lại có : \(b< 0\Leftrightarrow-2b^3>0\)

\(\Leftrightarrow M>0\left(đpcm\right)\)

NV
11 tháng 4 2020

\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)

\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)

\(f\left(x\right)>0\) khi \(x\ne3\)

Vậy:

1. Là phát biểu sai

2. Là phát biểu đúng

3. Là phát biểu đúng

8 tháng 10 2018

\(g\left(x\right)=2x-x^2-7=-\left(x^2-2x+7\right)=-\left(x^2-2.x.1+1+6\right)=-\left[\left(x-1\right)^2+6\right]< 0\forall x\)

Chúc bạn học tốt.

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

10 tháng 3 2018

a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm

@ngonhuminh

17 tháng 9 2017

\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)

Các câu sau tương tự