K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$

$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$

$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$

$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.

Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$

$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$

a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4

=2x^3+11x^2-x+3

b: Bậc là 3

Hệ số cao nhất là 2

c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3

=x^2-2x

C(X)=0

=>x=0 hoặc x=2

31 tháng 12 2016

\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)

\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)

+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)

+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)

như vậy là phương trình vô nghiệm

1 tháng 1 2017

Sai rồi nha bạn Nguyễn Thuỳ Trang.

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.

Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

5 tháng 5 2022

a)\(A\left(x\right)=2x^4-4x^3-x^2+5x+1\)

\(B\left(x\right)=-2x^4+4x^3+x^2-7x+1\)

\(C\left(x\right)=2x^4-4x^3-x^2+5x+1-2x^4+4x^3+x^2-7x+1\)

\(C\left(x\right)=-2x+2\)

\(D\left(x\right)=2x^4-4x^3-x^2+5x+1+2x^4-4x^3-x^2+7x-1\)

\(D\left(x\right)=4x^4-8x^3-2x^2+12x\)

b)cho C(x)  = 0

\(=>-2x+2=0\Rightarrow-2x=-2\Rightarrow x=1\)

5 tháng 5 2022

a) A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1 

A(x)= 2x^4--4x^3--x^2+5x+1

B(x)= 2x^4+4x^3+x^2--7x+1 C(x)= 4x^4+0+0--2x+2

A(x)= 2x^4--4x^3--x^2+5x+1

B(x)= 2x^4+4x^3+x^2--7x+1 D(x)=0--8x^3--2^2+12x+0