So sánh 3111 và 714
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 31^11 < 32^11 và 17^14 > 16^14
=> 32^11=(2^5)^11=2^55
=>16^14= (2^4)^14=2^56
Ta thấy : 55^56
=>2^55 < 2^56
=> 32^11 < 16^14
Tức : 31^11 < 17^14
Chúc bạn học tốt!
\(32^{11}=\left(2^5\right)^{11}=2^{55}\\ 16^{14}=\left(2^4\right)^{14}=2^{56}\\ Ta.có:2^{55}< 2^{56}\Rightarrow32^{11}< 16^{14}\\ Mà:31^{11}< 32^{11};16^{14}< 17^{14}\Rightarrow31^{11}< 17^{14}\)
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
\(2^{10}=1024< 1029=3.7^3\)
\(\Leftrightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\)
\(\Leftrightarrow2^{2380}< 3^{238}.7^{714}\) \(\left(1\right)\)
\(3^5=243< 256=2^8\) \(\left(2\right)\)
\(3^3=27< 32=2^5\) \(\left(3\right)\)
Từ \(\left(2\right)\), \(\left(3\right)\) ta có:
\(3^{328}=3^3.3^{325}=3^3\left(3^5\right)^{47}< 2^5\left(2^8\right)^{47}=2^{381}\)\(\left(4\right)\)
Từ \(\left(1\right)\), \(\left(4\right)\) ta có:
\(2^{2380}< 3^{238}.7^{714}\)
\(\Leftrightarrow2^{2380}< 2^{381}.7^{714}\)
\(\Leftrightarrow2^{1999}< 7^{714}\)
\(\Leftrightarrow2^{1993}< 7^{714}\).
a) 22014 < 31343
b) 3111 > 1744
c) A > 1
d) B > 1212
k mk nha. CHÚC BẠN HỌC TỐT. ^_^
Ta có 16<31
=>16^11<31^11
=>(2^4)^11<31^11
=>2^44<31^11 (1)
Lại có
7<8
=>7^14<8^14
=>7^14<(2^3)^14
=>7^14<2^42 (2)
Từ (1); (2) => 7^14<3^11
Bài làm :
Ta có :
=>3111 > 244 (1)
=> 714 < 242 (2)
Từ (1) và (2)
=> 3111 > 714