Cho \(A=\left\{a;b;c\right\}\). Hỏi có bao nhiêu cặp tập con của A giao nhau bằng \(\varnothing\)
Các bạn viết hộ mình công thức nếu có nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
a) Điều kiện : \(a\ne-b;b\ne1;a\ne-1\)
\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+a^2b+a-b}{1+a}\)
\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)
\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)
P = a + ab - b
b)
P = 3
<=> a + ab - b = 3
<=> a(b+1) - (b+1) +1 - 3 = 0
<=> (b+1)(a-1) = 2
Ta có bảng sau với a, b nguyên
b+1 | 1 | 2 | -1 | -2 |
a-1 | 2 | 1 | -2 | -1 |
b | 0 | 1 | -2 | -3 |
a | 3 | 2 | -1 | 0 |
so với đk | loại | loại |
Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}
đề như thế thì đương nhiên phải có điều kiện đó chứ em, đề đúng rồi anh xin xóa câu trl
1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.
\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
⇔\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
⇔\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)
⇔\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)
⇔\(x^2-ax-bx+ab=0\)
⇔\(x\left(x-a\right)-b\left(x-a\right)\)
⇔\(\left(x-a\right)\left(x-b\right)=0\)
⇔\(x=a\) hay \(x=b\)
-Vậy \(S=\left\{a;b\right\}\)
Đặt vế trái là P:
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)
Tương tự với 2 biểu thức còn lại, ta được:
\(P\le\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}+\dfrac{b}{b+\sqrt{ab}+\sqrt{bc}}+\dfrac{c}{c+\sqrt{ac}+\sqrt{bc}}\)
\(P\le\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn tham khảo ở đây nhé.
https://olm.vn/hoi-dap/detail/96898674827.html
Do tập A có 3 phần tử, theo nguyên lý Dirichlet thì hai tập con bất kì có nhiều hơn 1 phần tử của A đều có chung ít nhất 1 phần tử hay giao của chúng khác rỗng
\(\Rightarrow\) Các tập con của A có giao bằng rỗng khi và chỉ khi chúng có không nhiều hơn 1 phần tử
\(\Rightarrow\) Các tập đó là: \(\varnothing;\left\{a\right\};\left\{b\right\};\left\{c\right\}\)
Có \(C_4^2=6\) cặp thỏa mãn
Thầy dạy mk bảo là 14 cơNguyễn Việt Lâm