K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

À đúng rồi anh. Đề là 1 + x3y3 = 19x3

NV
27 tháng 9 2020

Mình có thể chắc là bải này bị sai đề (vì hình như đã giải 2, 3 lần bài giống hệt như vầy ở đây rồi)

Đề phải là \(1+x^3y^3=19x^3\) thì mới giải được

NV
14 tháng 10 2020

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(xy+1\right)=-6x^2\\\left(xy+1\right)\left(x^2y^2-xy+1\right)=19x^3\end{matrix}\right.\)

Nhận thấy \(x=0\) ko phải nghiệm, chia vế cho vế:

\(\frac{y}{x^2y^2-xy+1}=\frac{-6}{19x}\)

\(\Leftrightarrow-19xy=6x^2y^2-6xy+6\)

\(\Leftrightarrow6x^2y^2+13xy+6=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\frac{2}{2}\\xy=-\frac{3}{2}\end{matrix}\right.\)

Thay xuống pt dưới ...

29 tháng 11 2023

a: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\cdot\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=1+2=3\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\cdot3x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\left(2-2y\right)-3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-7y=18\\3x=2-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=-14\\3x=2-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=2-2\cdot\left(-2\right)=6\end{matrix}\right.\)

=>x=2 và y=-2

NV
17 tháng 2 2022

b.

Với \(x=0\) không phải nghiệm

Với \(x\ne0\) hệ tương đương:

\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)

Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)

Cộng vế với vế:

\(\left(u+v\right)^3=1\Rightarrow u+v=1\)

Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)

Theo Viet đảo, u và v là nghiệm của:

\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)

\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)

\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)

NV
17 tháng 2 2022

a.

ĐKXĐ: \(x\ne3\)

- Với \(x\ge0\) pt trở thành:

\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)

\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)

- Với \(x< 0\) pt trở thành:

\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)

\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)

Vậy pt đã cho vô nghiệm

26 tháng 12 2021

\(2,ĐK:x\ge4;y\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-4}=a\\\sqrt{y-1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2ab+58=16\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=-21\\a+b=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2-4b-21=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=7\Rightarrow a=-3\\b=-3\Rightarrow a=7\end{matrix}\right.\left(loại\right)\)

Vậy hệ vô nghiệm

26 tháng 12 2021

\(1,\\ \forall x=0\\ HPT\Leftrightarrow1=19\left(\text{vô lí}\right)\\ \forall x\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}+y^3=19\\\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{x}+y\right)^3-3\cdot\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=19\\\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=-6\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}+y=a\\\dfrac{y}{x}=b\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a^3-3ab=19\\ab=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+y=1\\\dfrac{y}{x}=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1+xy=x\\y=-6x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3};y=-2\\x=-\dfrac{1}{2};y=3\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{1}{3};-2\right);\left(-\dfrac{1}{2};3\right)\)

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

26 tháng 9 2021

\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\left(1\right)\\x^2+y^2-x+y=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

PT (1)\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x^2+y^2\right)-9\left(x-y\right)=-22\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x-y\right)^2-6xy-9\left(x-y\right)=-22\)

PT (2)\(\Leftrightarrow\left(x-y\right)^2-\left(x-y\right)+2xy=\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}a=x-y\\b=xy\end{matrix}\right.\)

Hệ tt \(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\a^2-a+2b=\dfrac{1}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\b=\dfrac{1-2a^2+2a}{4}\end{matrix}\right.\)

\(\Rightarrow a^3+3a\left(\dfrac{1-2a^2+2a}{4}\right)-3a^2-6\left(\dfrac{1-2a^2+2a}{4}\right)-9a=-22\)

\(\Leftrightarrow-2a^3+6a^2-45a+82=0\)

\(\Leftrightarrow a=2\)\(\Rightarrow b=-\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy...