K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

\(S_n=\frac{1.2.3.4...n\left(n+1\right)\left(n+2\right)...2n}{1.2.3.4...n}\)

\(=\frac{1.3...\left(2n-1\right).2.4...\left(2n-2\right)2n}{1.2.3.4...n}\)

\(=\frac{1.3...\left(2n-1\right).2^n.1.2...n}{1.2...n}\)

\(=2^n.1.3...\left(2n-1\right)⋮2n\)

12 tháng 10 2016

Ta có: \(\sqrt{a^3+b^3+c^3}=\sqrt{\left(a+b+c\right)^2}=a+b+c\)(với a,b,c dương)

=>với mọi n dương ta cũng viết biểu thức đc dưới dạng:

\(S_n=\left(1+2+3+...+n\right)^2\)

Đặt \(A=1+2+3+....+n\)

Tổng A có số số hạng theo n là:

\(\left(n-1\right):1+1=n\)(số)

Tổng A theo n là:

\(\frac{n\left(n+1\right)}{2}\).Thay A vào ta có:

\(\Rightarrow S_n=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

 

12 tháng 10 2016

Ta có công thức sau:

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\left(1+2+3+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (*)

\(\Leftrightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)

Cần chứng minh (1) đúng với mọi n dương

Với \(n=1;n=2\) thì đẳng thức đúng

Giả sử đẳng thức đúng với \(n=k\)

Nghĩa là: \(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Ta sẽ chứng minh nó đúng với \(n=k+1\)

Viết lại đẳng thức cần chứng minh \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\)(**)

Ta cũng có công thức tương tự (*)

\(\Leftrightarrow\frac{\left(k+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow\left(k^2+3k+2\right)^2-\left(k^2+k\right)^2=4\left(k+1\right)^3\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

Vậy theo nguyên lý quy nạp ta có đpcm.

\(MN\perpÂB\), AH\(\perp BD\)

ta có: MN,AH là 2 đ/cao tgiac ANB cắt tại M nên \(MB\perp AN\)

Gọi giao điểm MB,AN là K \(\Rightarrow\widehat{BKN}=90\Rightarrow\widehat{NBM}+\widehat{ANB}=90\Leftrightarrow\widehat{BNI}+\widehat{ANB}=90\Leftrightarrow\widehat{ANI}=90\)Vì BM//DI nên góc NBM=BNI( SLT)

Hỏi chấm bạn trả lời câu nào vậy

??????????????????

15 tháng 2 2018

Ez nhé

\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)

           \(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)

Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)

5 tháng 7 2016

xem lại câu a nhé bạn

19 tháng 5 2016

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

19 tháng 5 2016

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*