Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm Min
A=2x^2 +2xy+y^2 -2x+2y+2
B=x^4 -8xy -x^3y+x^2y^2-xy^2+y^4 +200
- Chúc cacban may mắn :))))))
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+x^2-4x+4-3\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(x-2\right)^2-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}}\)
Vậy.....
A = 2x2 + 2xy + y2 - 2x + 2y + 2
= ( x2 + 2xy + y2 + 2x + 2y + 1 ) + ( x2 - 4x + 4 ) - 3
= [ ( x + y )2 + 2( x + y ) + 12 ] + ( x - 2 )2 - 3
= ( x + y + 1 )2 + ( x - 2 )2 - 3 ≥ -3 ∀ x, y
Dấu "=" xảy ra <=> x = 2 ; y = -3
=> MinA = -3 <=> x = 2 ; y = -3
B thì nhờ các cao nhân khác ._. Em tịt rồi
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+x^2-4x+4-3\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(x-2\right)^2-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}}\)
Vậy.....
A = 2x2 + 2xy + y2 - 2x + 2y + 2
= ( x2 + 2xy + y2 + 2x + 2y + 1 ) + ( x2 - 4x + 4 ) - 3
= [ ( x + y )2 + 2( x + y ) + 12 ] + ( x - 2 )2 - 3
= ( x + y + 1 )2 + ( x - 2 )2 - 3 ≥ -3 ∀ x, y
Dấu "=" xảy ra <=> x = 2 ; y = -3
=> MinA = -3 <=> x = 2 ; y = -3
B thì nhờ các cao nhân khác ._. Em tịt rồi