cho tam giác ABC cân tại A, AM là trung tuyến. Chứng minh AB đối xứng AC qua AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh được B đối xứng với C qua AM, A đối xứng với chính A qua AM. Từ đó suy ra điều phải chứng minh.
a: Xét tứ giác AKMI có
MI//AK
MK//AI
Do đó: AKMI là hình bình hành
mà AK=AI
nên AKMI là hình thoi
a: Xét tứ giác ANCM có
I là trug điểm chung của AC và NM
góc AMC=90 độ
Do đó: ANCM là hình chữ nhật
b: Sửa đề; AM=CN
Vì ANCM là hình chữ nhật
nên AM=CN
a, Vì M,I là trung điểm BC,AC nên MI là đtb tg ABC
Do đó \(AB=2MI=8\left(cm\right)\)
b, Vì I là trung điểm AC và MK nên AKMB là hbh
Do đó AK//MC hay AK//MB và \(AK=MC=MB\) (M là trung điểm BC)
Vậy AKMB là hbh
a: Xét ΔACB có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔACB
Suy ra: \(MI=\dfrac{AB}{2}\)
hay AB=8
a) Xét tứ giác AEMF có: \(\left\{{}\begin{matrix}\widehat{EAF}=90^o\\\widehat{AFM}=90^o\\\widehat{MEA}=90^o\end{matrix}\right.\)
=> Tứ giác AEMF là hình chữ nhật.
b) Ta có: AM là đường trung tuyến của \(\Delta ABC\)
=> AM=BM=CM
Xét \(\Delta BME\) và \(\Delta AME\):
BM=AM(cmt)
EM: cạnh chung
\(\widehat{BEM}=\widehat{AEM}=90^o\)
=> \(\Delta BME=\Delta AME\left(ch-cgv\right)\)
=> BE=AE (2 cạnh tương ứng)
Xét tứ giác AMBH có E là giao điểm 2 đường chéo AB và MH; 2 đường chéo này cắt nhau tại trung điểm của mỗi đường
=> Tứ giác AMBH là hình bình hành (1)
Lại có BM=AM(2)
Từ (1) và (2) suy ra AMBH là hình thoi.
P/s: Đây là mình làm theo cách HS Trung bình cũng hiểu được, đáng nhé ra phải dùng cái tính chất đường cao trong tam giác cân rồi, nhưng thôi...:vv