Cho tam giác ABC vuông tại A. Tia phân giác 𝐵 cắt cạnh AC tại D.
Bx là tia đối của tia BA. Vẽ By là tia phân giác của góc 𝑥𝐵𝐶 . Qua A vẽ đường thẳng vuông góc với BD cắt cạnh BC tại M.
a) CMR: By//AM
b) CMR: 𝐵𝐴𝑀 = 𝐵𝑀𝐴
c) Đường thẳng vuông góc với DB tại D cắt BC tại N.
CMR: 𝑁𝐷𝐶 + 𝑥𝐵𝑦 = 900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔBAC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
a: Xét ΔABH vuông tại H và ΔEBH vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)
Do đó: ΔABH=ΔEBH
Suy ra: BA=BE
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
a. MA=MD (vì D đx A qua M) và MB=MC nên ABDC là hbh
Mà AB=AC nên ABDC là hthoi
b. Ta có AM là đtb tam giác EBC nên EC=2AM=AD
Mà FB=AD nên FB=EC
Mà FB//CE nên BCEF là hbh
Mà \(\widehat{FBC}=90^0\) nên BCEF là hcn
hình tự vẽ, c,d tự làm tiếp, bài này đơn giản nha.
a/ Xét ΔABD và ΔEBD vuông tại A và E có:
BD chung; AB = EB; góc A=E=90o
=> ΔABD = ΔEBD (...)
=> góc ABD = góc EBD
=> BD là phân giác của góc ABC
b,xét tam giác BEK vuông tại Evà tam giác BACvuông tại E , có BE=BA, góc KBC chung
=>tam giac BEK= tam giac BAC (ch-gn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
BA=BE(gt)
Do đó: ΔABD=ΔEBD(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABD}=\widehat{EBD}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{ABD}=\widehat{CBD}\)
mà tia BD nằm giữa hai tia BA,BC
nên BD là tia phân giác của \(\widehat{ABC}\)(đpcm)
a: \(\widehat{yBC}=\dfrac{\widehat{xBC}}{2}\)
\(\widehat{DBC}=\dfrac{\widehat{CBA}}{2}\)
Do đó: \(\widehat{DBy}=90^0\)
\(\Leftrightarrow By\perp BD\)
hay By//AM