K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-4x+4+2x-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(x-2\right)^2+\frac{2\left(x^2-2x+1\right)}{x+\sqrt{2x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)^2+\frac{2\left(x-1\right)^2}{x+\sqrt{2x-1}}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\frac{2\left(x-1\right)^2}{x+2\sqrt{2x-1}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=1\end{matrix}\right.\) \(\Rightarrow\) Ko tồn tại x thỏa mãn

Vậy pt vô nghiệm

14 tháng 7 2023

thầy ơi sao đoạn 2x-2\(\sqrt{2x-1}\) thành \(\dfrac{2\left(x-1\right)^2}{x+\sqrt{2x-1}}\) vậy ạ

26 tháng 4 2022

????  

xin lỗi nha ! 

mình mới học lớp 3 

mà bài này khó nắm 

26 tháng 4 2022

ko bt thì ko nhắn nha

NV
22 tháng 10 2021

Đặt \(\sqrt{x^2-2x+5}=t>0\)

\(\Rightarrow x^2-2x=t^2-5\)

Phương trình trở thành:

\(t=t^2-5-1\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2x+5}=3\)

\(\Rightarrow x^2-2x+5=9\)

\(\Rightarrow x^2-2x-4=0\)

\(\Rightarrow...\)

22 tháng 10 2021

Thầy không dùng dấu \(''\Leftrightarrow''\) ạ 

15 tháng 3 2021

undefined

15 tháng 3 2021

Bình phương trong căn phải để trong giá trị tuyệt đối. Tại sao lại bỏ được dấu giá trị tuyệt đối cậu nhỉ?

14 tháng 7 2021

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

14 tháng 7 2021

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

9 tháng 9 2021

ĐK: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{2x-1}=x^2-x+1\)

      \(\Leftrightarrow2x-1=x^4+x^2+1-2x^3-2x+2x^2\)

      \(\Leftrightarrow x^4-2x^3+3x^2-4x+2=0\)

      \(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)=0\)

      \(\Leftrightarrow x=1\left(tm\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Em cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

21 tháng 10 2021

ô noooooooooooooooooooooo

19 tháng 7 2023

\(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\left(1\right)\)

\(ĐK:x\in R\)

\(pt\left(1\right)\Leftrightarrow2x^2+16x+18+x^2+1+2\sqrt[]{(2x^2+16x+18)\left(x^2+1\right)}=4x^2+16x+16\)

\(\Leftrightarrow3+2\sqrt{(2x^2+16x+18)\left(x^2+1\right)}=x^2\)

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Câu này mình phải đặt điều kiện để vế phải lớn hơn hoặc bằng 0 nữa vì vế trái luôn lớn hơn bằng 0 rồi. Còn lại cứ giải tiếp là ra nhé

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)