K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta có:

$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$

$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$

$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$

$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$

$=2(x^2+y^2+xy)^2$

Ta có đpcm.

11 tháng 6 2017

Ta có:

\(VT=2\left(x^2+xy+y^2\right)^2\)

\(=2\left[\left(x^2\right)^2+\left(xy\right)^2+\left(y^2\right)^2+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2\left[x^4+x^2y^2+y^4+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2x^4+2x^2y^2+2y^4+4x^3y+4xy^3+4x^2y^2\)

\(=x^4+y^4+\left(x^4+4x^3y+6x^2y^2+4xy^3+y^2\right)\)

\(=x^4+y^4+\left(x+y\right)^4=VP\)

Vậy \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\) (đpcm)

Chúc bạn học tốt!!!

11 tháng 6 2017

Thằng hiếu đã đánh tan vế trái thì anh đây đánh tan vế trái

\(VT=x^4+y^4+\left(x+y\right)^4\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left(x+y\right)^4-4xy\left(x+y\right)^2+\left(2xy\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=2\left[\left(x+y\right)^4-4xy\left(x+y\right)^2+x^2y^2\right]\)

\(=2\left[\left(x+y\right)^2-xy\right]^2\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)

22 tháng 8 2018

\(\left(x+y\right)^4+x^4+y^4\)

\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)

\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)

\(=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4y^3x+x^4+y^4\)

\(=2x^4+2y^4+6x^2y^2+4x^3y+4y^3x\)

\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)

7 tháng 7 2016

x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4

=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2

=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2

=2(x2+y2)2+4xy(x2+y2)+2x2y2

=2[(x2+y2)+2xy(x2+y2)+x2y2]

=2(x2+y2+xy)2 (Đpcm)

13 tháng 6 2016

Chứng minh vế trái bằng vế phải:

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

13 tháng 6 2016

\(\text{Chứng minh vế trái bằng vế phải: }\)

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

NV
25 tháng 5 2021

Điều kiện là \(xy\ne0\)

BĐT tương đương:

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

3 tháng 2 2022

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

20 tháng 6 2018

(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)

= x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5

= (x^4y-x^4y)+(x^3y^2-x^3y^2)+(x^2y^3)+(xy^4-xy^4)+x^5-y^5

= 0+0+0+0+x^5-y^5

= x^5-y^5

Vay (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4) = x^5-y^5

20 tháng 6 2018

nho k nha

2 tháng 9 2017

Ta có : VP = \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT

Vậy  \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)