K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

                                                       Bài giải

a, \(\left(2-x\right)\left(x+\frac{2}{3}\right)< 0\) khi \(2-x\text{ và }x+\frac{2}{3}\text{ đối nhau}\)

TH1 : \(\hept{\begin{cases}2-x>0\\x+\frac{2}{3}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\Rightarrow\text{ }x< -\frac{2}{3}\)

TH2 : \(\hept{\begin{cases}2-x< 0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\Rightarrow\text{ }x>2\)

Vậy ...

b, Bài này bạn vào câu hỏi tương tự nha !

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

24 tháng 8 2017

HD:

          Dễ thấy  b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4

Biến đổi  P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x

                               = (x2 – 2)2 – x(x2 – 2) – 6x2

          Từ đó  Q(y) = y2 – xy – 6x2

          Tìm m, n sao cho  m.n = - 6x2 và m + n = - x  chọn m = 2x, n = -3x

          Ta có:  Q(y) = y2 + 2xy – 3xy – 6x2

                             = y(y + 2x) – 3x(y + 2x)

                             = (y + 2x)(y – 3x)

          Do đó:  P(x) = (x2 + 2x – 2)(x2 – 3x – 2).

24 tháng 8 2017

a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

NV
4 tháng 4 2019

1/

\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2/

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

NV
4 tháng 4 2019

\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)

3 tháng 1 2016

VD:

 

a) x = 1 ; y = 2

b)  x = 5 ; y = -6

 

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)

NV
28 tháng 1 2019

ĐKXĐ: \(...\)

\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{y^2}{y\left(x+y\right)}+\dfrac{y^2-x^2}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\left(\dfrac{x-y}{x+y}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\left(\dfrac{1}{x+y}-\dfrac{x+y}{xy}\right)\dfrac{x^2-y^2}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\dfrac{-\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{2}{x}+\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{x}+\dfrac{1}{y}\)

b/ \(x^2+y^2+10=2x-6y\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\)

Bài 2: 

a: =>4x(x+5)=0

=>x=0 hoặc x=-5

b: =>(x+3)(x-3)=0

=>x=-3 hoặc x=3