Tính hợp lí: \(G=\left(50^2+48^2+46^2+..........+2^2\right)-\left(49^2+47^2+45^2+..........+1^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{97^3+83^3}{180}-97\cdot83\)
\(A=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=\frac{180\cdot\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=97^2-97\cdot83+83^2-97\cdot83\)
\(A=9409-2\cdot8051+6889\)
\(A=196\)
b) \(B=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(B=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(B=50+49+48+47+...+2+1\)
Số số hạng là : \(\left(50-1\right):1+1=50\)( số )
Tổng B là : \(\left(50+1\right)\cdot50:2=1275\)
Vậy....
(502+482+...+22) - (492+472+...+12)
= (502-492) + (482-472) + ... + (22-12)
= (50+49)(50-49) + (48+47)(48-47) + ... + (2+1)(2-1)
= 50+49+48+47+...+1
= \(\frac{\left(50+1\right).50}{2}=\frac{51.50}{2}=1275\)
\(A=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+3^2+1^2\right)\)
\(A=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(A=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+\left(46-45\right)\left(46+45\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(A=99+95+91+...+7+3\)
\(A=3+7+...+91+95+99\)
...............................................................................
há há.. bài này mà lớp 8 hã?
\(50^2+48^2+...+4^2+2^2-49^2-47^2-...-1^2\)
\(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...\left(2+1\right)\left(2-1\right)\)
\(=99+95+...+3\)
\(=\frac{\left(99+3\right)\left(99-3\right):4+1}{2}\)
\(=1275\)
a) \(227+50+23=\left(227+23\right)+50=250+50=300\)
b) \(135+360+65+40=\left(135+65\right)+\left(360+40\right)=200+400=600\)
c) \(1+2+3+4+5+...+97+98+99+100\)
\(=\left(100+1\right)+\left(99+2\right)+...+\left(50+51\right)\)
\(=101+101+101+...+101\)
\(=101\cdot50\)
\(\Leftrightarrow5050\)
d) \(115\cdot13-13\cdot15=13\cdot\left(115-15\right)=13\cdot100=1300\)
e) \(50-49+48-47+...+4-3+2-1\)
\(=\left(50-49\right)+\left(48-47\right)+...+\left(2-1\right)\)
\(=1+1+1+1+..+1\)
\(=1\cdot25\)
\(=25\)
f) \(30\cdot40\cdot50\cdot60=10\cdot3+10\cdot4+10\cdot5+10\cdot6\)
\(=10\cdot10\cdot10\cdot10\cdot3\cdot4\cdot5\cdot6\)
\(=10000\cdot360\)
\(=3600000\)
g) \(27\cdot36+27\cdot64=27\cdot\left(36+64\right)=27\cdot100=2700\)
h) \(5\cdot2^2-18:3=5\cdot4-18:3=20-6=14\)
i) \(13\cdot17-256:16+14:7-2021^0\)
\(=13\cdot17-4^4:4^2+2-1\)
\(=13\cdot17-16+2-1\)
\(=13\cdot17-17\)
\(=17\cdot\left(13-1\right)\)
\(=204\)
j) \(7^2-36:3=49-12=37\)
=(100+99)(100-99)+(98+97)(98-97)+....+(2+1)(2-1)
=199+195+....+3
dãy số trên có số số hạng là :
(199-3):4+1=50 (số hạng)
tổng dãy số trên là :
(199+3)50/2=5050
vậy 100^2-99^2+98^2-97^2+...+2^2-1^2=5050
\(\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)
\(=1+1+...+1+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)(có 49 số 1)
\(=\left(1+\frac{48}{2}\right)+\left(1+\frac{47}{3}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)+1\)
\(=\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}+\frac{50}{50}\)
\(=50\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)\)
Chúc bạn học tốt.
a: \(A=\dfrac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}=\dfrac{16}{8}=2\)
b: \(=\left(263+37\right)^2=300^2=90000\)
c: \(=\left(136-46\right)^2=90^2=8100\)
d: \(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
=50+49+...+2+1
=51x50:2=1275