Tính hợp lí: \(F=136^2-92.136+46^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(263^2+74.263+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2\)
\(=90000\)
c) \(136^2-92.136+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2\)
\(=8100\)
a: \(A=\dfrac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}=\dfrac{16}{8}=2\)
b: \(=\left(263+37\right)^2=300^2=90000\)
c: \(=\left(136-46\right)^2=90^2=8100\)
d: \(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
=50+49+...+2+1
=51x50:2=1275
1362 − 92.136 + 462
= 1362 − 2.46.136 + 462
=(136−46)2
=902
=8100
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left(3y+2x\right)^2\ge0\forall x;y\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)
Vậy ...
46 . 2 = 92 nhỉ?
\(F=136^2-92.136+46^2=136^2-2.46.136+46^2=\left(136-46\right)^2=90^2=8100\)
Tính hợp lí:
F = 1362 − 92.136 + 462
F = 1362 − 2.46.136 + 462
F = (136 + 46)2
\(\Rightarrow\) Áp dụng hằng đẳng thức số 2: (A - B)2 = A2 - 2AB + B2