K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

15 tháng 5 2017

Có: n2 + n + 2 = n(n + 1) + 2 

mà n(n + 1) là tích 2 số tự nhiên liên tiếp nên n(n + 1) chia hết cho 2

Do đó n2 + n + 2 chia hết cho 2

Giả sử n2 + n +2 chia hết cho 5 thì ta có n2 + n  + 2 chia hết cho 10

nên n2 + n + 2 có chữ số tận cùng là 0

nên n2 + n = n(n + 1) có chữ số tận cùng là 8

mà n(n + 1) là tích 2 số tự nhiên liên tiếp nên chỉ có các chữ số tận cùng là 0, 2 và 6

Điều này gây mâu thuẫn nên n2 + n + 2 không chia hết cho 5

15 tháng 11 2018

\(\text{Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

17 tháng 6 2015

13. A = { 0 }

14. Có n + 1 số tự nhiên ko vượt quá n, trong đó n \(\in\) \(N\).

15. Những dòng cho ta 3 số tự nhiên liên tiếp giảm dần là dòng d

( câu cuối hình như bạn ghi sai đề rồi )

27 tháng 6 2016

cái cuối phài là 

m+1,m,m-1

27 tháng 2 2018

ta xét hai khả năng

1. nếu\(n⋮3\) thì \(\left(n^3+2n\right)⋮3\)

2.nếu n không chia hết cho 3 thì n có dạng \(n=3k+1\) hoặc n=3k+2

với k thuộc N

Với \(n=3k+1:\left(n^3+2n\right)=\left(3k+1\right)^3+2\left(3k+1\right)\)

\(=27k^3+27k^2+9k+1+6k+2=3\left(9k^3+9k^2+5k+1\right)⋮3\)

Với \(n=3k+2⋮\left(n^3+2n\right)=\left(3k+2\right)^3+2\left(3k+2\right)\)

\(=27k^3+54k^2+36k+8+6k+4=3\left(9k^3+18k^2+14k+4\right)⋮3\)

mệnh đề được chứng minh

6 tháng 2 2020

Ta có: \(N=0,2\cdot\left(2012^{2012}-2011^{2011}\right)\)

Vì \(2012^{2012}>0\) và \(2012^{2012}>2011^{2011}\Rightarrow2012^{2012}-2011^{2011}>0\) (1)

Ta xét chữ số tận cùng: \(2012^{2012}=\left(...6\right)\) và \(2011^{2011}=\left(...1\right)\)

\(\Rightarrow N=0,2\cdot\left(2012^{2012}-2011^{2011}\right)=0,2\cdot\left(\left(...6\right)-\left(...1\right)\right)\)

\(=0,2\cdot\left(...5\right)=\left(...0\right)\)(2)

Kết hợp (1) và (2) => N là một số tự nhiên ( ĐPCM )