Biết số tự nhiên a chia cho 5 dư 4.Chứng minh rằng a chia cho 5 dư1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 5 dư 4 thì a có dạng: 5k+4
\(=>a^2=\left(5k+4\right)^2=\left(5k\right)^2+2.5k.4+4^2=25k^2+40k+16\)
\(=5\left(5k^2+8k+3\right)+1\) chia 5 dư 1 (vì 5(5k2+8k+3) chia hết cho 5)
Vậy................
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: a 2 = 5 k + 4 2
= 25 k 2 + 40k + 16
= 25 k 2 + 40k + 15 + 1
= 5(5 k 2 + 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5 k 2 + 8k + 3) ⋮ 5
Vậy a 2 = 5 k + 4 2 chia cho 5 dư 1. (đpcm)
a) Bài giải:
Gọi số cần tìm là aa
aa chia hết cho 2
=> a có tận cùng là 0;2;4;6;8 (1)
Mà a chia 5 dư 2 => a = 2 hoặc 7 (2)
Từ (1) và (2) => a = 2
=> aa = 22.
b) Tương tự bn nhé!
a chia 5 dư 4 => a = 5k + 4
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16=5k\left(5k+8\right)+16\)
5k (5k + 8) chia hết cho 8 => tận cùng = 0 hoặc = 5 => 5k (5k + 8) + 16 tận cùng 1 hoặc 6
=> a^2 chia 5 dư 1
a chia 5 dư 4=>a=5k+4
=>a2=(5k+4)(5k+4)
=(5k+4)5k+4(5k+4)
=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1
=>đpcm
Ta co:
\(a=5n+4\)
\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)
cai này chia 5 dư 1
Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)
Vì hai số đều là các số tự nhiên
Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 = 25k2 + 40k + 16
Vì 25k2 chia hết cho 5
40k chia hết cho 5
Mà 16 chia 5 dư 1
Vậy 25k2 + 40k + 16 chia 5 dư 1
=> ĐPCM
a chia 5 dư 3 =>a=5k+3
a chia 5 dư 4 =>a=5c+4
=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12
=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2
=>đpcm
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Sửa đề: Chứng minh \(a^2\) chia 5 dư 1
Ta có: a chia 5 dư 4
⇔\(a=5k+4\)(k∈N)
⇔\(a^2=\left(5k+4\right)^2=25k^2+40k+16\)
\(\Leftrightarrow a^2=25k^2+40k+15+1\)
\(\Leftrightarrow a^2=5\left(5k^2+8k+3\right)+1\)
hay \(a^2\) chia 5 dư 1(đpcm)