K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

a) Ta có: \(x^4y^4+x^2y^2+1\)

\(=\left(x^4y^4+2x^2y^2+1\right)-x^2y^2\)

\(=\left(x^2y^2+1\right)^2-\left(xy\right)^2\)

\(=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\)

21 tháng 9 2020

c) \(4x^4+1\)

\(=\left(4x^4+4x^2+1\right)-4x^2\)

\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

giỏi vậy tui ngồi làm quài ko ra lun :^

6 tháng 8 2021

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

11 tháng 12 2023

a) $x^3-3x^2y+4x-12y$

$=(x^3-3x^2y)+(4x-12y)$

$=x^2(x-3y)+4(x-3y)$

$=(x-3y)(x^2+4)$

b) $4x^2-y^2+4y-4$

$=4x^2-(y^2-4y+4)$

$=(2x)^2-(y^2-2\cdot y\cdot2+2^2)$

$=(2x)^2-(y-2)^2$

$=[2x-(y-2)][2x+(y-2)]$

$=(2x-y+2)(2x+y-2)$

c) $9x^2-6x-y^2+2y$

$=(9x^2-y^2)-(6x-2y)$

$=[(3x)^2-y^2]-2(3x-y)$

$=(3x-y)(3x+y)-2(3x-y)$

$=(3x-y)(3x+y-2)$

$\text{#}Toru$

11 tháng 12 2023

bạn ấn ở chỗ x2 cho rõ hơn nhé

4 tháng 9 2021

a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)

b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)

 

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

12 tháng 10 2023

2:

a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)

\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)

b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-1\right)\)

c: \(=\left(y^2+10y+25\right)-9z^2\)

\(=\left(y+5\right)^2-\left(3z\right)^2\)

\(=\left(y+5+3z\right)\left(y+5-3z\right)\)

d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)

\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)

1:

a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)

b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)

\(=2y\left(5y-6\right)+4\left(5y-6\right)\)

\(=2\left(5y-6\right)\left(y+2\right)\)

c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)

\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)

\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)

d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)

\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)

\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)

\(=2y\left(x+y\right)\left(-x-7y\right)\)

12 tháng 10 2023

Bài 1

a) x(3 - 4x) + 5(3 - 4x)

= (3 - 4x)(x + 5)

b) 2y(5y - 6) - 4(6- 5y)

= 2y(5y - 6) + 4(5y - 6)

= (5y - 6)(2y + 4)

= 2(5y - 6)(y + 2)

c) 27(x - 2)³ - 3x(2 - x)²

= 27(x - 2)³ - 3x(x - 2)²

= 3(x - 2)²[9(x - 2) - x]

= 3(x - 2)²(9x - 18 - x)

= 3(x - 2)²(8x - 18)

= 6(x - 2)²(4x - 9)

d) 6y(x² - y²) - 8y(x + y)²

= 6y(x - y)(x + y) - 8y(x + y)²

= 2y(x + y)[3(x - y) - 4(x + y)]

= 2y(x + y)(3x - 3y - 4x - 4y)

= 2y(x + y)(-x - 7y)

= -2y(x + y)(x + 7y)

a: 6x-2y=2(3x-y)

b: =(x-y)(x-2)(x+2)

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
a. Không phân tích được nữa

b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$

$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$

12 tháng 10 2021

a) Sửa đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

b) \(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)

 

12 tháng 10 2021

\(c,Sửa:x^2-2x+2y-y^2=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\\ d,=\left(4x^4+36x^2+81\right)-36x^2\\ =\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\\ e,=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x^2+x-x+1\\ =x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

26 tháng 10 2021

a: \(=x\left(x-3\right)-4y\left(x-3\right)\)

=(x-3)(x-4y)

d: \(=\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)

\(=\left(x+2\right)\left(x-2+x+2\right)\)

=2x(x+2)

26 tháng 10 2021

\(a,=x\left(x-3\right)-4y\left(x-3\right)=\left(x-4y\right)\left(x-3\right)\\ b,=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)=\left(x-1\right)\left(x^2-3x+1\right)\\ c,=\left(x-y\right)\left(1-a\right)\\ d,=\left(x-2\right)\left(x-2+x+2\right)=2x\left(x-2\right)\\ e,=x^2\left(x+y\right)-xz\left(x+y\right)=x\left(x-z\right)\left(x+y\right)\\ f,=\left(x-y-2\right)\left(x+y\right)\)

a: \(x^2-8x+16x=x^2+8x=x\left(x+8\right)\)

b: \(4x^2-8xyz+4y^2=4\left(x^2-2xyz+y^2\right)\)

c: \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)