Cho hình chữ nhật có AB = 5cm, BC = 12cm. Vẽ BH vuông góc với AC tại H.
a) Tính độ dài AC và BH
b) Tia BH cắt đường thẳng DC tại k và cắt AD tại N. Chứng minh: \(BH^2=HN.NK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại B có \(AC^2=BA^2+BC^2\)
=>\(AC^2=5^2+12^2=169\)
=>AC=13(cm)
Xét ΔABC vuông tại B có \(sinACB=\dfrac{AB}{AC}=\dfrac{5}{13}\)
=>\(\widehat{ACB}\simeq23^0\)
\(\Leftrightarrow\widehat{BAC}=90^0-\widehat{ACB}=67^0\)
b: Xét ΔBAC có BM là phân giác
nên \(BM=\dfrac{2\cdot BA\cdot BC}{BA+BC}\cdot cos\left(\dfrac{\widehat{ABC}}{2}\right)\)
\(=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{17}\left(cm\right)\)
c: Xét ΔABK vuông tại A có AH là đường cao
nên \(BH\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BK=AH\cdot AC\)
a: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC^2=4^2+3^2=25\)
=>AC=5(cm)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>BH*5=3*4=12
=>BH=2,4(cm)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)
=>\(\widehat{BAC}\simeq37^0\)
b: Xét ΔABE vuông tại A có AH là đường cao
nên \(BH\cdot BE=BA^2\)(1)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có
\(\widehat{HBC}\) chung
Do đó: ΔBHC\(\sim\)ΔBFE
=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)
=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)
Xét ΔBHF và ΔBCE có
BH/BC=BF/BE
\(\widehat{HBF}\) chung
Do đó: ΔBHF\(\sim\)ΔBCE
a) Ta có: Áp dụng định lý Pytago:
\(AC^2=AB^2+BC^2=5^2+12^2=169\)
\(\Rightarrow AC=13\left(cm\right)\)
Áp dụng định lý thứ 4 ta có:
\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
\(\Leftrightarrow BH^2=\frac{3600}{169}\Rightarrow BH=\frac{60}{13}\left(cm\right)\)
Ta có: ΔAHN ~ ΔKDN (g.g)
=> \(\frac{AN}{NH}=\frac{KN}{ND}\Leftrightarrow HN\cdot NK=AN\cdot ND\) (1)
Lại có: ΔAHN ~ ΔADC (g.g)
=> \(\frac{AN}{AH}=\frac{AC}{AD}\Leftrightarrow\frac{AN}{AH}=\frac{HC}{ND}\Rightarrow AN\cdot ND=AH\cdot HC\) (2)
Từ (1) và (2) => \(AH\cdot HC=HN\cdot NK\Leftrightarrow BH^2=HN.NK\)
=> đpcm