K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

1, vt : \(\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right).\sqrt{3+2\sqrt{2}}\)

=\(\dfrac{\sqrt{2}+1-5-\sqrt{2}}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\)

=\(\dfrac{-4}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}+1\right)^2}\)

=\(\dfrac{-4\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

=-4

2, A=\(\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right)\div\dfrac{2}{x+\sqrt{x}-2}\)

=\(\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\left(\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

=\(\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\dfrac{-\sqrt{x}-2}{\sqrt{x}+1}\)

8 tháng 8 2019

ai giúp mình với ạ ngaingung

8 tháng 5 2022

a) Ta có: \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left[2-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right]\left[2+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\)\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\) (đpcm)

b) Ta có \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)\(=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}\right].\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

4 tháng 7 2021

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)

 

 

8 tháng 7 2017

mọi người ơi giải giúp mình một tí đang cần gấp

8 tháng 4 2021

a, \(\sqrt{\left(\sqrt{5}-4\right)^2}-\sqrt{5}+\sqrt{20}=4\)

\(VT=\sqrt{\left(4-\sqrt{5}\right)^2}-\sqrt{5}+\sqrt{20}=\left|4-\sqrt{5}\right|-\sqrt{5}+\sqrt{20}\)

\(=4-\sqrt{5}-\sqrt{5}+2\sqrt{5}=4\) hay \(VT=VP\)

Vậy ta có đpcm 

b, Với \(x>0,x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{2}{x-2\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}=\frac{x}{\sqrt{x}+2}\)

25 tháng 4 2021

1.

Giả sử điều trên là đúng ta có:

\( \left | \sqrt{5}-4 \right |-\sqrt{5}+\sqrt{20}=4\)

Ta có: \(4>\sqrt{5}\)

\(\Rightarrow 4-\sqrt{5}- \sqrt{5}+\sqrt{20}=4\)

\(\Leftrightarrow 4-\sqrt{20}+\sqrt{20}=4\)

\(\Rightarrow đpcm\)

2.

 

22 tháng 10 2021

a.

A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

A = \(\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

A = \(\dfrac{\left(x-2+\sqrt{x}\right).\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{\left(x-2+\sqrt{x}\right)\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x\sqrt{x}+2x+x+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-x\sqrt{x}-2x-x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{-3x-4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{-\left(3x+4\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{-\sqrt{x}\left(3\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}+2\sqrt{x}-2}\)

A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}-2}\)

10 tháng 8 2018

a. \(B=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

b.Ta có:

\(B=\dfrac{2}{x+\sqrt{x}+1}\). Mà \(\left[{}\begin{matrix}2>0\\x+\sqrt{x}+1=\left[\left(\sqrt{x}\right)^2+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right]+\dfrac{3}{4}>0\end{matrix}\right.\)

Vậy B>0 \(\forall x\)