K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

3x2 + 2y2 + 2xy - 10x - 10y + 15 = 0

<=> 6x2 + 4y2 + 4xy - 20x - 20y + 30 = 0

<=> (4x2 + 4xy + y2) - 10(2x + y) + 25 + (5y2 - 10xy + 5) = 0

<=> (2x + y)2 - 10(2x + y) + 25 + 5(y - 1)2 = 0

<=> (2x + y - 5)2 + 5(y - 1)2 = 0

<=> \(\hept{\begin{cases}2x+y-5=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5-y}{2}\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

\(3x^2+2y^2+2xy-10x-10y+15=0\)

\(\Rightarrow\left(x^2+2xy+y^2-6x-6y+9\right)+\left(2x^2-4x+2\right)+\left(y^2-4y+4\right)=0\)

\(\Rightarrow\left(x+y-3\right)^2+2\left(x-1\right)^2+\left(y-2\right)^2=0\)

mà \(\left(x+y-3\right)^2\ge0\forall x,y\)

\(2\left(x-1\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}x+y-3=0\\x-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

5 tháng 5 2021

Là được (x-y-5)^2 + y^2 lớn hơn hoặc bằng 0 

Dấu bằng xảy ra khi x = 5 và y=0

Do đó x^2 - 2xy + 2y^2 - 10x + 10y + 25 lớn hơn hoặc bằng 0

Chúc bạn học tốt nhớ theo dõi mk vs nhé. Mk cảm ơn

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

29 tháng 10 2023

`A= x^2+2xy-3x^2 +2y^2+3x^2-y^2`

`= (x^2-3x^2 +3x^2) +2xy +(2y^2 -y^2)`

`= x^2 +2xy +y^2`

`=(x+y)^2`

29 tháng 10 2023

A = \(x^2\) + 2\(xy\) - 3\(x^2\) + 2y2 + 3\(x^2\) - y2

A = (\(x^2\)- 3\(x^2\) + 3\(x^2\)) + 2\(xy\) + (2\(y^2\) - y2)

A = \(x^2\) + 2\(xy\) + y2

A = (\(x\) + y)2

 

b: \(=\left(x-5\right)^2-9y^2\)

\(=\left(x-5-3y\right)\left(x-5+3y\right)\)

Bài 1: 

b: \(=\left(x-5\right)^2-9y^2\)

\(=\left(x-5-3y\right)\left(x-5+3y\right)\)

7 tháng 12 2021

\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)

7 tháng 12 2021

1, =3x (2x -3y)

c, = 3x(x-y) -2(x-y)

= (3x-2)(x-y)

2, Ta có: x2 -6x+10= (x-3)2 +11

Nhận xét: (x-3)2 >= 0 với mọi số thực x

=> (x-3)2 +1 >= 1 >0 (đpcm)

 

20 tháng 10 2021

\(2x^2-2y^2+10x+10y\)

\(=2\left(x^2-y^2\right)+10\left(x+y\right)\)

\(=2\left(x-y\right)\left(x+y\right)+10\left(x+y\right)\)

\(=2\left(x+y\right)\left(x-y+5\right)\)

20 tháng 10 2021

\(2x^2-2y^2+10x+10y=\left(2x^2-2y^2\right)+\left(10x+10y\right)=2\left(x^2-y^2\right)+10\left(x+y\right)=2\left(x-y\right)\left(x+y\right)+10\left(x+y\right)=\left(x+y\right)\left[2\left(x-y\right)+10\right]=\left(x+y\right)\left(2x-2y+10\right)=2\left(x+y\right)\left(x-y+5\right)\)

30 tháng 5 2022

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

29 tháng 7 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B