Giúp mình vớiiii:<< . Tìm GTNN của
M = x+1/căn x +1
Với x>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=\frac{3}{1-x}+\frac{4}{x}\ge\frac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)
Dấu = xảy ra khi: \(x=\frac{2}{\sqrt{3}+2}\)
Em nghĩ là như vầy ạ:
\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)
Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)
Vậy min B = 4/5 khi x = 3/2 (TMĐK)