K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

Bài 1

( x - y )2 - 4

= ( x - y )2 - 22

= ( x - y - 2 )( x - y + 2 )

x2 - 16( x + y )2

= x2 - 42( x + y )2

= x2 - ( 4x + 4y )2

= ( x2 - 4x - 4y )( x2 - 4x + 4y )

8x3 + 36x2y + 54xy2 + 27y3

= ( 2x )3 + 3.( 2x )2.3y + 3.2x.( 3y )2 + ( 3y )3

= ( 2x + 3y )3

Bài 2.

a) ( x2 + 4 )( x2 - 4 ) - ( x2 + 1 )( x2 - 1 )

= [ ( x2 )2 - 42 ] - [ ( x2 )2 - 12 ]

= x4 - 16 - x4 + 1

= -15

b) ( y - 3 )( y + 3 )( y2 + 9 )( y2 + 2 )( y2 - 2 )

= [ ( y - 3 )( y + 3 )( y2 + 9 ) ][ ( y2 + 2 )( y2 - 2 ) ]

= { [ ( y - 3 )( y + 3 ) ]( y2 + 9 ) }[ ( y2 )2 - 22 ]

= [ ( y2 - 9 )( y2 + 9 ) ]( y4 - 4 )

= ( y4 - 81 )( y4 - 4 )

= y4( y4 - 4 ) - 81( y4 - 4 )

= y8 - 4y4 - 81y4 + 324

= y8 - 85y4 + 324

25 tháng 10 2017

\(x^8+64\)

\(=x^8+16x^4+64-16x^4\)

\(=\left(x^4\right)^2+2.x^4.8+8^2-16x^4\)

\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)

\(=\left(x^4+8-4x^2\right)\left(x^4+8+4x^2\right)\)

2 tháng 11 2017

5x2+11x+6

=5x2+5x+6x+6

=(5x2+5x)+(6x+6)

=5x(x+1)+6(x+1)

=(x+1)(5x+6)

10 tháng 12 2021

\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)

10 tháng 12 2021

c: =(x-5)(x+3)

e: =(x+1-y)(x+1+y)

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

18 tháng 2 2019

1 ) a) \(4x^2-x^2+8x^2\)

\(=\left(4+8\right).x^2+x^2-x^2\)

\(=12.x^3\)

b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)

\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)

\(=-\frac{1}{4}.x^6+y^6\)

c) \(3y-7y+4y-6y\)

\(=\left(3-7+4-6\right).y.y.y.y\)

\(=-6.y^4\)

18 tháng 2 2019

2) 

\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)

\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)

\(=\frac{25}{6}.y^5\)

b) \(5x^3-3x^2+x-x^3-4x^2-x\)

\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)

\(=-2.0=0\)

hông chắc

3)a)  \(5xy^2.\frac{1}{2}x^2y^2x\)

\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)

\(=\frac{5}{2}.x^5.y^4\)

b) Tổng các bậc của đơn thức là

5+4 = 9

Hệ số của đơn thức là \(\frac{5}{2}\)

Phần biến là x;y

Thay x=1;y=-1 vào đơn thức

\(\frac{5}{2}.1^5.\left(-1\right)^4\)

\(\frac{5}{2}.1.\left(-1\right)\)

\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)

Vậy ....

chắc không đúng đâu uwu

a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)

\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)

b: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)

\(-a^2-2a-1=-\left(a+1\right)^2\)