K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 15

= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 15

= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 15 (*)

Đặt t = x2 + 5x + 4 

(*) trở thành

t( t + 2 ) - 15

= t2 + 2t - 15

= t2 - 3t + 5t - 15

= t( t - 3 ) + 5( t - 3 )

= ( t - 3 )( t + 5 )

= ( x2 + 5x + 4 - 3 )( x2 + 5x + 4 + 5 )

= ( x2 + 5x + 1 )( x2 + 5x + 9 )

b) ( x + 2 )( x + 3 )2( x + 4 ) - 12

= [ ( x + 2 )( x + 4 ) ]( x + 3 )2 - 12

= ( x2 + 6x + 8 )( x2 + 6x + 9 ) - 12 (*)

Đặt t = x2 + 6x + 8

(*) trở thành

t( t + 1 ) - 12

= t2 + t - 12

= t2 - 3t + 4t - 12

= t( t - 3 ) + 4( t - 3 )

= ( t - 3 )( t + 4 )

= ( x2 + 6x + 8 - 3 )( x2 + 6x + 8 + 4 )

= ( x2 + 6x + 5 )( x2 + 6x + 12 )

= ( x2 + x + 5x + 5 )( x2 + 6x + 12 )

= [ x( x + 1 ) + 5( x + 1 ) ]( x2 + 6x + 12 )

= ( x + 1 )( x + 5 )( x2 + 6x + 12 )

17 tháng 9 2020

a, Gọi\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

                \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt\(y=x^2+5x+4\)

\(\Rightarrow A=y\left(y+2\right)-15\)

        \(=y^2+2y-15\)

        \(=\left(x-3\right)\left(x+5\right)\)

Hay\(A=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

Vậy...

b,Gọi\(B=\left(x+2\right)\left(x+3\right)^2\left(x+4\right)-12\)

           \(=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)

Đặt\(z=x^2+6x+8\)

\(\Rightarrow B=z\left(z+1\right)-12\)

        \(=z^2+z-12\)

        \(=\left(z-3\right)\left(z+4\right)\)

Hay\(B=\left(x^2+6x+5\right)\left(x^2+6x+12\right)\)

Vậy...

Linz

19 tháng 8 2021

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt \(t=x^2+5x+4\)

(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)

Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)

a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+15\right)\left(3x-4\right)\)

23 tháng 7 2023

\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)

\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)

27 tháng 3 2021

Bn ấn vào câu hỏi của bn sẽ rs những câu tương tự có đáp án nhé!!Chúc bn lm đc bài này nha!!

27 tháng 3 2021

Trả lời:

A=(x-1)(x+2)(x-3)(x+4)-144

A= (x2-5x-14)(x2-5x-24)-144 (1)

đặt m=x2-5x-14

=> A= m.(m-10)-144

A=m2-10m-144

A= (m-18)(m+8)

thay m vào, ta có:

A= (x2-5x-32)(x2-5x-6)

A=(x2-5x-32)(x+1)(x-6)

`a, 4x^3 - 16x = 4x(x^2-4) = 4x(x-2)(x+2)`

`b, x^4 - y^4 = (x^2-y^2)(x^2+y^2) = (x-y)(x+y)(x^2+y^2)`

`c, xy^2 + x^2y + 1/4y^3`

`= y(xy + x^2 + 1/4y^2)`

`d, x^2 + 2x - y^2 + 1 = (x+1)^2 - y^2`

`= (x+1+y)(x+1-y)`

a: Ta có: \(x^5-x^3+x^2-1\)

\(=x^3\left(x^2-1\right)+\left(x^2-1\right)\)

\(=\left(x-1\right)\cdot\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

b: Ta có: \(5x^3-45x\)

\(=5x\left(x^2-9\right)\)

\(=5x\left(x-3\right)\left(x+3\right)\)

c: Ta có: \(16x^4y^2+2xy^5\)

\(=2xy^2\left(8x^3+y^3\right)\)

\(=2xy^2\cdot\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

d: Ta có: \(a^3-8+6a^2-12a\)

\(=\left(a-2\right)\left(a^2+2a+4\right)+6a\left(a-2\right)\)

\(=\left(a-2\right)\left(a^2+8a+4\right)\)

e: Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

26 tháng 8 2021

`b)x^3+y^3+z^3-3xyz`

`=x^3+3xy(x+y)+z^3-3xy(x+y)-3xyz`

`=(x+y)^3+z^3-3xy(x+y+z)`

`=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y)`

`=(x+y+z)(x^2+2xy+y^2-zx-yz-3xy+z^2)`

`=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

26 tháng 8 2021

giúp mk vs mk cần gấp T^T

 

28 tháng 9 2021

\(a,=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\\ b,=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\\ c,=\left[3x-2y-2\left(x+y\right)\right]\left[3x-2y+2\left(x+y\right)\right]\\ =5x\left(x-4y\right)\\ d,=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\\ f,=\left(x+3\right)\left(x^2-3x+9\right)\\ g,=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\\ h,=\left(5x-1\right)\left(25x^2+5x+1\right)\)

28 tháng 9 2021

\(a)x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)\\ b)x^2-3y^2=\\ c)(3x-2y)^2-4(x+y)^2=(3x-2y)^2-[2(x+y)]^2\\=(3x-2y+2x+2y)(3x-2y-2x-2y)=5x(x-4y)\\ d)9(x-y)^2-4(x+y)^2=[3(x-y)]^2-[2(x+y)]^2=(3x-3y+2x+2y)(3x-3y-2x-2y)\\=(5x-y)(x-5y)\\ f)x^3+27=(x+3)(x^2-3x+9)\\ g)27x^3-0,001=(3x-0,1)(9x+0,3x+0,01)\\ h)125x^3-1=(5x-1)(25x^2+5x+1)\)

NV
16 tháng 7 2021

a.

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)

b.

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c.

\(=x^4-1+4x^2-4\)

\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

a) Ta có: \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b) Ta có: \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

giỏi vậy tui ngồi làm quài ko ra lun :^

6 tháng 8 2021

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)