Phân tích đa thức thành nhân tử:
(x^2-3x)^2+(2x^2-6x)-24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=5x^2-5x+3x-3=\left(x-1\right)\left(5x+3\right)\\ b,=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\\ c,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ d,=7x^2-7x+x-1=\left(x-1\right)\left(7x+1\right)\)
a) 2x2-2y2-6x-6y = ( 2x2-2y2)- ( 6x+6y)
= 2(x2-y2)- 6(x+y)
2( x+y )- 6( x+y )
..........
b) x^3 +3x^2 - 3x -1= (x^3-1) +(3x^2-3x)
= (x3-1)+ 3x( x-y)
.......
Những dòng mình .... là đến đấy đơn giản rồi, đặt nhân tử chung là đc
=
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
Hình như ở câu phân tích đa thức đề là (3x+5)(x-2) chứ không phải (x+2)
1..
(x+1)(2-x)-(3x+5)(x+2)
=(x+1)(2-x)+(3x-5)(2-x)
=(2-x)(x+1+3x-5)
=(2-x)(4x-4)
2...
(3x-5)(2x+7)-(x+1)(6x-5)=16
=>(6x2+21x-10x-35)-(6x2-5x+6x-5)-16=0
=>6x2+21x-10x-35-6x2+5x-6x+5-16=0
=>(6x2-6x2)+(21x-10x+5x-6x)+(-35+5-16)=0
=>10x-46=0
=>10x =46
=> x =4.6
Vậy x=4.6(bạn nên đổi ra phân số thì sẽ đúng hơn)
a: =4x^2+8x-3x-6
=4x(x+2)-3(x+2)
=(x+2)(4x-3)
b: =3(3x^2-2x-1)
=3(3x^2-3x+x-1)
=3(x-1)(3x+1)
c: =2x^2-4x+x-2
=2x(x-2)+(x-2)
=(x-2)(2x+1)
d: =3x^2+3x-2x-2
=3x(x+1)-2(x+1)
=(x+1)(3x-2)
e: =3x^2+9x+x+3
=3x(x+3)+(x+3)
=(x+3)(3x+1)
a) \(4x^2+5x-6\)
\(=4x^2+8x-3x-6\)
\(=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(4x-3\right)\)
b) \(9x^2-6x-3\)
\(=3\left(3x^2-2x-1\right)\)
\(=3\left(3x^2-3x+x-1\right)\)
\(=3\left[3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=3\left(x-1\right)\left(3x+1\right)\)
c) \(2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=\left(2x^2-4x\right)+\left(x-2\right)\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
d) \(3x^2+x-2\)
\(=3x^2+3x-2x-2\)
\(=\left(3x^2+3x\right)-\left(2x+2\right)\)
\(=3x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-2\right)\)
e) \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(3x+1\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
( x2 - 3x )2 + ( 2x2 - 6x ) - 24
= ( x2 - 3x )2 + 2( x2 - 3x ) - 24 (*)
Đặt t = x2 - 3x
(*) trở thành :
t2 + 2t - 24
= t2 - 4t + 6t - 24
= t( t - 4 ) + 6( t - 4 )
= ( t - 4 )( t + 6 )
= ( x2 - 3x - 4 )( x2 - 3x + 6 )
= ( x2 + x - 4x - 4 )( x2 - 3x + 6 )
= [ x( x + 1 ) - 4( x + 1 ) ]( x2 - 3x + 6 )
= ( x + 1 )( x - 4 )( x2 - 3x + 6 )
\(\left(x^2-3x\right)^2+\left(2x^2-6x\right)-24\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-24\)(1)
Đặt \(a=x^2-3x\)
(1)=\(a^2+2a-24\)
\(=a^2-4a+6a-24\)
\(=a\left(a-4\right)+6\left(a-4\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(=\left(x^2-3x-4\right)\left(x^2-3x+6\right)\)
\(=\left(x^2-4x+x-4\right)\left(x^2-3x+6\right)\)
\(=\left[x\left(x-4\right)+\left(x-4\right)\right]\left(x^2-3x+6\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x+6\right)\)