tìm các giá trị của x để các biểu thức sau có giá trị âm: x mũ 2 - 1 phần 5 nhân x
ai làm đc ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
\(A=x^2+4x< 0\)
\(=>x^2< -4x\)
\(=>x< -4\)
\(\left(x-3\right)\left(x+7\right)< 0\)
\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)
\(=>-7< x< 3\)
\(x^2+4x< 0\)
\(\Rightarrow x\left(x+4\right)< 0\)
Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)
Những câu còn lại tương tự thôi
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
\(F=\frac{x^2-1}{x^2}=1-\frac{1}{x^2}\)
Để \(F< 0\)thì \(1-\frac{1}{x^2}< 0\Leftrightarrow\frac{1}{x^2}>1\Leftrightarrow1>x^2\Leftrightarrow x^2-1< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\Leftrightarrow-1< x< 1\)và \(x\ne0\)
\(F=\frac{x^2-1}{x^2}\)
Để F đạt giá trị âm
\(\Rightarrow\hept{\begin{cases}x^2-1< 0\\x^2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 1\\x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}-1< x< 1\\x\ne0\end{cases}}}\)
Vậy \(-1< x< 1;x\ne0\) thì C đạt giá trị âm
\(x^2-\frac{1}{5}x< 0\)
\(x\left(x-\frac{1}{5}\right)< 0\)
TH 1 :
\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\)
\(\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\) \(\Rightarrow0< x< \frac{1}{5}\)
TH 2 :
\(\hept{\begin{cases}x< 0\\x-\frac{1}{5}>0\end{cases}}\)
\(\hept{\begin{cases}x< 0\\x>\frac{1}{5}\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy \(0< x< \frac{1}{5}\) là nghiệm của bất phương trình trên
Bài giải
\(x^2-\frac{1}{5}\cdot x=x\left(x-\frac{1}{5}\right)< 0\)khi \(x\) và \(x-\frac{1}{5}\) đối nhau. Mà \(x>x-\frac{1}{5}\) nên :
\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\Rightarrow\text{ }0< x< \frac{1}{5}\)