K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

áp dụng hằng đẳng thức số 3:
=(4x)2-(4+x)2
=(4x-4-x)(4x+4+x)
=(5x-4)(5x+4) 

đây là ý kiến cá nhân thôi nha

13 tháng 10 2017

x ^2-5x-3=( x^2-5x)-3=x( x-5)-3

13 tháng 10 2017

Đề sai rồi bạn ơi

21 tháng 10 2021

1. (x-3)2

2. (3y+2x)2

3. (1/5x-8y)(1/5x+8y)

4. (x-2y)(x2+2xy+4y2)

5. (4x-3-x-1)(4x-3+x+1)

(3x-4)(5x-2)

\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)

10 tháng 10 2021

a) \(=\left(x-2\right)^2\)

b) \(=\left(2x+1\right)^2\)

c) \(=\left(4x-3y\right)\left(4x+3y\right)\)

d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)

e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)

f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)

h) \(=\left(x+2\right)^3\)

i) \(=\left(1-x\right)^3\)

10 tháng 10 2021

a/ $=(x-2)^2$

b/ $=(2x+1)^2$

c/ $=(4x-3y)(4x+3y)$

d/ $=(1-x)(x+7)$

e/ $=(-x+1)(5x-1)$

f/ $=(x-y)(x^2+xy+y^2)$

g/ $=(3+x)(9-3x+x^2)$

h/ $=(x+2)^3$

i/ $=(1-x)^3$

10 tháng 10 2021

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(4x^2+4x+1=\left(2x+1\right)^2\)

g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

9 tháng 10 2016

Bài khó quá

4x⁴+4x-3= (2x)²+2(2x)+1-4

=(2x+1)²-2²=(2x+1-2)(2x+1+2)

=(2x-1)(2x+3)

9 tháng 10 2016

bn làm đ rùi, tui đ cho bn

20 tháng 8 2023

\(8x^3+12x^2y+6xy^2+y^3-z^3\)

\(=\left(2x+y\right)^3-z^3\)

\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)

20 tháng 8 2023

a, 8a3 - 36a2 +54ab2 - 27b3

=(8a3-36a2b +54ab2 - 27b3)

=(2a-3b)2

=(2a-3b)(2a-3b)(2a-3b)

b, 8x3 + 12x2y + 6xy2 + y3 - z 3

=(8x3 + 12x2y + 6xy2 + y3) - z3

=(2x + y)3 - y3

=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2

= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2

 

23 tháng 9 2017

a) x3-2x2-x+2

=x(x2-1)+2(-x2+1)

=x(x2-1)-2(x2-1)

=(x2-1)(x-2)

b)

x2+6x-y2+9

=x2+6x+9-y2

=(x+3)2-y2

=(x+3-y)(x+3+y)

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)