cho a>=b>=c và x<=y<=z.cm (a+b+c)(x+y+z)>=3(ax+by+cz)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Câu 1:
\(A\left(x\right)+B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)
\(=-6x^3-5x^2+4x+1\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)
\(=-2x^3+5x^2+6x-3\)
Lời giải:
PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$
$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$
$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$
$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$
$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$
a: M(x)=A(x)+B(x)
=4x^4-7x^3+6x^2-5x-6-4x^4+7x^3-5x^2+5x+4
=x^2-2
b: C(x)=A(x)-B(x)
=4x^4-7x^3+6x^2-5x-6+4x^4-7x^3+5x^2-5x-4
=8x^4-14x^3+11x^2-10x-10
c: M(1)=1^2-2=-1
C(1)=8-14+11-10-10=5-20=-15
`a,`
\(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(4x^4+6x^2-7x^3-5x-6\right)+\)`(-5x^2+7x^3+5x+4-4x^4)`
`M(x)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4`
`=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)`
`=x^2-2`
`b,`
`A(x)=B(x)+C(x)`
`-> C(x)=A(x)-B(x)`
`-> C(x)=(4x^4 + 6x^2 - 7x^3 - 5x - 6)-(-5x^2+7x^3+5x+4-4x^4)`
`C(x)=4x^4 + 6x^2 - 7x^3 - 5x - 6+5x^2-7x^3-5x-4+4x^4`
`= (4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)`
`= 8x^4-14x^3+11x^2-10x-10`
`c,`
`M(1)=1^2-2=1-2=-1`
`C(1)=8*1^4-14*1^3+11*1^2-10*1-10`
`=8-14+11-10-10=-6+11-10-10=5-10-10=-5-10=-15`
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0