K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

ko bt làm xuống lớp 8 đê

14 tháng 9 2020

\(tana\cdot cota=1\) 

\(tana\cdot\frac{2}{3}=1\) 

\(tana=\frac{3}{2}\) 

\(1+tan^2a=\frac{1}{cos^2a}\) 

\(1+\left(\frac{3}{2}\right)^2=\frac{1}{cos^2a}\) 

\(1+\frac{9}{4}=\frac{1}{cos^2a}\) 

\(\frac{13}{4}=\frac{1}{cos^2a}\) 

\(cos^2a=\frac{4}{13}\)  

\(cosa=\frac{2\sqrt{13}}{13}\) ( cấp 2 nên chỉ lấy cos dương ) 

\(sin^2a+cos^2a=1\) 

\(sin^2a+\frac{4}{13}=1\) 

\(sin^2a=\frac{9}{13}\) 

\(sin^2a+cos^3a-tana\) 

\(=\frac{9}{13}+\frac{4\sqrt{13}}{13}-\frac{3}{2}\) 

\(=\frac{18}{26}+\frac{8\sqrt{13}}{26}-\frac{39}{26}\) 

\(=\frac{-21+8\sqrt{13}}{26}\)              

9 tháng 10 2016

a) sin anpha = 2/3 => góc anpha = 42o 

cos 42o = 0,743

tan 42o =  0,9

cot  42o = 1/tan 42o = 1/0,9 = 1,111

b) tan anpha + cot anpha = 3

<=> tan anpha + 1/tan anpha = 3

<=> tananpha = 2

<=> tan anpha = \(\sqrt{2}\)

=> góc anpha =  55

Ta có: a = sin 55o . cos 55o

<=> a = 0,469

NV
20 tháng 6 2019

\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)

\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

- Với \(tana=\frac{3-\sqrt{5}}{2}\)

\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)

\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)

\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)

\(sin\left(2\pi+a\right)=sina=...\)

\(tan\left(\pi-a\right)=-tana=...\)

\(cot\left(\pi+a\right)=cota=...\)

TH2: \(tana=\frac{3+\sqrt{5}}{2}\)

Tương tự như trên

15 tháng 9 2023

\(sin\alpha=\dfrac{3}{4}\)

\(sin^2\alpha+cos^2\alpha=1\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha\)

\(\Leftrightarrow cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)

\(\Leftrightarrow cos\alpha=-\dfrac{\sqrt[]{7}}{4}\left(\dfrac{\pi}{2}< \alpha< \pi\right)\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{-\dfrac{\sqrt[]{7}}{4}}=-\dfrac{3}{\sqrt[]{7}}=-\dfrac{3\sqrt[]{7}}{7}\)

\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{\sqrt[]{7}}{3}\)

NV
26 tháng 7 2021

\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)

\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)

\(C=sin30^0-cot50^0-cos60^0+tan40^0\)

\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)

\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)

\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)

\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)

 

16 tháng 8 2020

\(\sin\alpha=\frac{2}{5}\)

\(\Rightarrow\cos\alpha=\sqrt{1-\sin^2\alpha}\)

\(=\sqrt{1-\frac{4}{25}}\)

\(=\sqrt{\frac{21}{25}}=\)\(\frac{\sqrt{21}}{5}\)

\(\Rightarrow\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{5}:\frac{\sqrt{21}}{5}=\frac{2}{\sqrt{21}}\)và \(\cot\alpha=\frac{\sqrt{21}}{2}\)

2. Tương tự a)

\(\cos B=\sqrt{1-\sin^2B}\)

\(=\sqrt{1-\frac{1}{4}}\)

\(=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)

\(\tan B,\cot B\)bạn tự tính nốt.

16 tháng 8 2020

\(sin\alpha=0,4\Rightarrow sin^2\alpha=0,16\Rightarrow cos^2\alpha=1-sin^2\alpha=1-0,16=0,84\Rightarrow cos\alpha=\frac{\sqrt{21}}{5}\)

\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,4}{\frac{\sqrt{21}}{5}}=\frac{2\sqrt{21}}{21}\)

\(cot\alpha=1:sin\alpha=1:\frac{2\sqrt{21}}{21}=\frac{21}{2\sqrt{21}}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

NV
8 tháng 2 2021

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)