Chứng minh rằng số \(\sqrt{n^2+n^2.\left(n+1\right)^2+\left(n+1\right)^2}\) là số nguyên nếu n là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)
Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)
Bài này tương tự bài 20.7 trong quyển Tài liệu chuyên toán THCS 9 tập 1 của ông Tôn thân ý
Dùng phương pháp quy nạp nhé
\(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)
\(=\sqrt{n^2+\left(n^2+n\right)^2+\left(n^2+2n+1\right)}\)
\(=\sqrt{2\left(n^2+n\right)+\left(n^2+n\right)^2+1}\)
\(=\sqrt{\left(n^2+n+1\right)^2}=\left|n^2+n+1\right|=n^2+n+1\)
Suy ra đpcm
\(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)
\(=\sqrt{n^2+\left(n^2+n\right)^2+\left(n^2+2n+1\right)}\)
\(=\sqrt{2\left(n^2+n\right)+\left(n^2+n\right)^2+1}=\sqrt{\left(n^2+n+1\right)^2}\)
\(=\left|n^2+n+1\right|=n^2+n+1\) vì \(n^2+n+1=\left(n+\frac{1}{4}\right)^2+\frac{3}{4}>0\)
Do đó nếu \(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\) là số nguyên nếu n là số nguyên