K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

mà a+b+c=6

nên \(a=b=c=\frac{6}{3}=2\)

Vậy: \(A=\left(1-a\right)^{2017}+\left(b-1\right)^{2017}+\left(c-2\right)^{2017}\)

\(=\left(1-2\right)^{2017}+\left(2-1\right)^{2017}+\left(2-2\right)^{2017}\)

\(=-1^{2017}+1^{2017}=0\)

23 tháng 10 2018

\(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)

\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)

\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)

\(=1+\left(-1\right)+0\)

\(=0\)

Vậy......

P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha 

22 tháng 12 2017

Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu b tại đây nhé.

27 tháng 12 2017

bạn tham khảo ý b nhe

11 tháng 2 2019

1.a) A là số tự nhiên khi và chỉ khi 4x\(⋮\)x-2 =>x-2 là ước của 4 và x-2 \(\ge\)1=>x={3;4;6}

b) |A| > A khi và chỉ khi A âm=> x<2

2.b2c+2014 hay b2c+2017 bạn

Lê hồ trọng tín +2017 nha bạn, bấm lộn hhihihi

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

2 tháng 6 2016
  • \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=\left(a+b+c\right)^2-6.\)
  • \(P=\left(a+b+c\right)^2-6-6\left(a+b+c\right)+2017=\left(a+b+c\right)^2-6\left(a+b+c\right)+9+2002\)

\(=\left(a+b+c-3\right)^2+2002\)

  • Mà \(\left(a+b+c-3\right)^2\ge0\)nên GTNN của P bằng 2002.
3 tháng 6 2016

đúng rồi đấy

7 tháng 10 2019

Em tham khảo cách làm tại link: Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath

26 tháng 8 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)

\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)

\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)

\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)

Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0

mà a+b+c=0 

\(\Rightarrow c=3\)

Thay c=3 vào biểu thức P ta có:

\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)

Vậy P=0