Tìm nghiệm nguyên:
\(x^3+y^3+z^3=3xyz+1\)
Ez quá nhỉ:))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x+y)^3-3xy(x+y)+z^3-3xyz=1
=>(x+y)^3+z^3-[3xy(x+y)+3xyz]=1
=>(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)=1
=>(x+y+z)(x^2+y^2+z^2+2xy-xz-yz-3xy)=1
=>(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=1
=>(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)=2
=>(x+y+z)[(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)]=2
=>(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=2
Có x+y+z;(x-y)^2+(y-z)^2+(z-x)^2 thuộc Z vì x,y nguyên
Mà (x-y)^2+(y-z)^2+(z-x)^2 >=0
Nên phân tích 2 thành tích 2 số nguyên mà 1 số lớn hơn hoặc bằng 0 ta có:
2=1. 2
=> x+y+z=2 và (x-y)^2+(y-z)^2+(z-x)^2 =1
+)Nếu (x-y)^2+(y-z)^2+(z-x)^2 =1
Phân tích 1 thành tổng 3 scp có 1=0+0+0
Xét 3 trường hợp rồi tự làm nốt
+)Nếu x+y+z=2
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Đây là bài gần giống nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
Ta có: \(x^3+y^3+z^2=3xyz+1\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=1\)
\(\Leftrightarrow\left(x+y+z\right)^3-3xy\left(x+y+z\right)-3z\left(x+y\right)\left(x+y+z\right)=1\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(zx+zy\right)-3xy\right]=1\)
\(\Leftrightarrow\left(x+y+z\right)\left[x^2+y^2+z^2+2xy+2yz+2zx-3xy-3yz-3zx\right]=1\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=1\)
Đến đây các bạn tự giải nhé ^_^
Bn gì ơi, đây kh pk mk nhờ bn giải hộ, mk nổi hứng đăng câu hỏi lên thôi nên lm hết đi nhá