Cho a,b,c là các số nguyên khác 0 thoả mãn điều kiện (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2 cmr: a^3+b^3+c^3 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow a+b+c=0\)
Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
a) chia hết cho 2: 450 ; 490 ; 540 ; 590 ; 504 ; 904 ; 940 ; 950 ; 954 ; 594
b) chia hết cho 4: 904 ; 940 ; 504 ; 540
c) chia hết cho 2 và 5: 450 ; 540 ; 950 ; 940
ok mk nha!!!!! 565876978978345235355456457567658798712423423534645654756
a) chia hết cho 2: 450;490;540;504;904;940;954;594
b) chia hết co 4: 904;940;504;540
c) chia hết cho 2 và 5: 450;540;950;940
1.Cho a,b,c,da,b,c,d là các số nguyên thỏa mãn a3+b3=2(c3−d3)a3+b3=2(c3−d3) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng 1a3(b+c)+1b3(c+a)+1c3(a+b)≥32
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)