Cho a,b>o và a+b=1
Tìm GTNN của Q= ( a+1/b )2 + ( b+1/a)2
Giải theo cách lớp 8 nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy - Schwars ta có:
\(Q\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}\).
Áp dụng BĐT Schwars ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\).
Do đó: \(a+\frac{1}{b}+b+\frac{1}{a}=\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\ge5\Rightarrow Q\ge\frac{25}{2}\).
Vậy Min Q = \(\frac{25}{2}\Leftrightarrow a=b=\frac{1}{2}\).
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
Áp dụng BĐT BSC và Cosi:
\(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{4ab}+4ab+\dfrac{5}{4ab}\)
\(\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{4ab}.4ab}+\dfrac{5}{\left(a+b\right)^2}\)
\(=\dfrac{4}{\left(a+b\right)^2}+2+\dfrac{5}{\left(a+b\right)^2}\ge4+2+5=11\)
\(min=11\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu
\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)
\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
`A=(a+1/b)(b+1/a)`
`=ab+1+1+1/(ab)`
`=2+ab+1/(16ab)+15/(16ab)`
Áp dụng cosi
`=>ab+1/(16ab)>=1/2`
`ab<=(a+b)^2/4=1/4`
`=>16ab<=4`
`=>15/(16ab)>=15/4`
`=>A>=15/4+1/2+2=25/4`
Dấu "=" xảy ra khi `a=b=1/2`
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi a=b=1/2.
Vậy MinA=1/2.
(bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) thì bạn tự c/m nhé)
\(A=\dfrac{b^2}{b-1}=\dfrac{b^2-1+1}{b-1}=b+1+\dfrac{1}{b-1}=b-1+\dfrac{1}{b-1}+2\)
Áp dụng BĐT cosi cho \(b>0\left(b>1\right)\)
\(A=b-1+\dfrac{1}{b-1}+2\ge2\sqrt{\left(b-1\right)\cdot\dfrac{1}{b-1}}+2=2+2=4\)
Dấu \("="\Leftrightarrow\left(b-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}b-1=1\\b-1=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow b=2\left(tm\right)\)
Ta sẽ chứng minh bất đẳng thức phụ (*) sau : \(\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>\left(x^2+y^2\right)2\ge\left(x+y\right)^2< =>2x^2+2y^2\ge x^2+y^2+2xy\)
\(< =>2x^2+2y^2-x^2-y^2-2xy\ge0< =>x^2-2xy+y^2\ge0< =>\left(x-y\right)^2\ge0\)*đúng*
Sử dụng bất đẳng thức (*) ta có : \(Q=\frac{\left(a+\frac{1}{b}\right)^2}{1}+\frac{\left(b+\frac{1}{a}\right)^2}{1}\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}=\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\)
Tiếp tục ta sẽ chứng minh bất đẳng thức phụ (**) sau : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>\left(a+b\right)^2\ge4ab< =>a^2+b^2+2ab-4ab\ge0< =>\left(a-b\right)^2\ge0\)*đúng*
Áp dụng bất đẳng thức (**) ta được : \(\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}=\frac{\left[1+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Khi đó \(Q\ge\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy ta có điều phải chứng minh