K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

\(x^2-xy+y^2+1>0\)

\(\Leftrightarrow x^2-xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)

\(\Leftrightarrow\left(x^2-xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1>0\)

\(\Leftrightarrow\left[x^2-2\cdot x\cdot\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\right]+\frac{3}{4}y^2+1>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)( đúng với ∀ x, y ∈ R )

=> đpcm 

NV
27 tháng 12 2020

\(VT=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+\dfrac{z^2}{4}+4-yz-4y+2z\right)+\dfrac{3}{4}\left(z^2-\dfrac{8z}{3}+\dfrac{16}{9}\right)-\dfrac{91}{12}\)

\(VT=\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{z}{2}-2\right)^2+\dfrac{3}{4}\left(z-\dfrac{4}{3}\right)^2-\dfrac{91}{12}\ge-\dfrac{91}{12}>-7\)

29 tháng 12 2020

Đề bài bảo cm \(\ge\) -7 chứ đâu phải > -7 đâu Nguyễn Việt Lâm?

17 tháng 3 2023

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

17 tháng 3 2023

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2 (1)

��=��=�� Áp dụng tính chất dãy tỉ số bằng nhau ta có:

��=��=��=�+�+��+�+� = �+�+�1 = �+�+�

�� = �+�+� ⇒ �2�2 = (�+�+�) (2) 

Từ (1) và (2) ta có :

�2�2 = �2 + y2 + z2 = ( �+�+�)2 (đpCm)

7 tháng 10 2018

x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0

27 tháng 12 2021

\(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2\forall x\in R\)

27 tháng 12 2021

cảm ơn cậu nhé

a: x>2

y>2

=>x+y>2+2=4

x>y>2

=>xy>2^2=4

b: x^2-xy=x(x-y)

x-y>0; x>0

=>x(x-y)>0

=>x^2-xy>0

y>2

=>y-2>0

=>y(y-2)>0

=>y^2-2y>0

x>y và y>2

=>y>0 và x-y>0

=>y(x-y)>0

=>xy-y^2>0

4 tháng 3 2018

CMR: \(\frac{1}{x}+\frac{1}{y}\le2\)  biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0

8 tháng 3 2018

tôi quên mât CMR: 1/x+1/y<=-2