Cho tam giác ABC có tia AM là tia đối của tia AB. Từ A kẻ tia AN là tia phân giác của góc MAC. Trên cạnh AC lấy điểm F tùy ý. Từ F ẻ FP // AB ( P thuộc BC ) và FE // AN ( E thuộc AB ) Hãy chứng tỏ FE cũng là tia phân giác của góc AFP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao của PF với AN ta có
FE//AN và FP//AB => Tứ giác AKDE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> ^AEF=^AKF (góc đối của hình bh) (1)
^MAK=^AEF (góc đồng vị) (2)
^MAK=^KAF (đề bài) (3)
Từ (1) (2) (3) => ^KAF=^AKF (4)
^AKF=^EFP (góc đồng vị) (5)
^KAF=^AFE (góc so le trong) (6)
Từ (4) (5) (6) => ^AFE=^EFP => FE là tia phân giác của ^AFP
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
góc M=góc N
Do đó: ΔBME=ΔCNF
c: góc OBC=góc EBM
góc OCB=góc FCN
mà góc EBM=góc FCN
nên góc OBC=góc OCB
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
=>AO vuông góc với BC
ΔAMN cân tại A
mà AO là đường cao
nên AO là phân giác của góc MAN
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
có rồi