K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:
PT $\Leftrightarrow 3\sin x-4\sin ^3x-m(1-2\sin ^2x)-(m+1)\sin x+m=0$

$\Leftrightarrow \sin x[4\sin ^2x-2m\sin x+(m-2)]=0$

Dễ thấy trường hợp $\sin x=0$ ta thu được 2 nghiệm thuộc $(0;3\pi)$

Giờ ta cần tìm $m$ sao cho $4\sin ^2x-2m\sin x+(m-2)=0(*)$ có 6 nghiệm thuộc $(0;3\pi)$. Tất nhiên đảm bảo $\sin x\neq 0$

Đặt $\sin x=t(t\in [-1;1]$) thì PT $(*)$ trở thành:

$4t^2-2mt+(m-2)=0(I)$

$\sin x\neq 0\Leftrightarrow t\neq 0\Rightarrow m\neq 2$

Nếu $t=1$ thì $m=2$ (vô lý) nên $t\neq 1$)

Vậy $t\in [-1;1)$ và $t\neq 0$

$\Delta'_{(I)}=m^2-4(m-2)=(m-2)^2+4>0$ nên pt $(I)$ luôn có 2 nghiệm $t_1,t_2$ phân biệt.

Bây giờ bạn vẽ đồ thị hàm sin ra.

Nếu $t_1,t_2\in (0;1)$ thì ứng với mỗi $t$ ta có 4 nghiệm $x$ thỏa mãn

$\Rightarrow (*)$ có 8 nghiệm (loại)

Nếu $t_1,t_2\in [-1;0)$ thì ứng với mỗi $t$ ta có nhiều nhất $2$ nghiệm $x$ thỏa mãn

$\Rightarrow (*)$ có nhiều nhất 4 nghiệm (loại)

Nếu $t_1\in (0;1)$ và $t_2\in (-1;0)$ thì đảm bảo $(*)$ có 6 nghiệm.

$\Leftrightarrow 1>t_1>0>t_2>-1$

Điều này xảy ra khi: \(\left\{\begin{matrix} t_1t_2< 0\\ (t_1+1)(t_2+1)>0\\ (t_1-1)(t_2-1)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2< 0\\ t_1t_2+(t_1+t_2)+1>0\\ t_1t_2-(t_1+t_2)+1>0\end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m-2}{4}< 0\\ \frac{m-2}{4}+\frac{m}{2}+1>0\\ \frac{m-2}{4}-\frac{m}{2}+1>0\end{matrix}\right.\Leftrightarrow 2> m> \frac{-2}{3}\)

11 tháng 9 2020

bạn ơi mình giải ra \(-1< m\le\frac{1}{2}\) thì cũng có 6no là sai hả bạn

25 tháng 7 2018

Đáp án A

Phương pháp giải:

Biến đổi công thức lượng giác, đưa phương trình bài cho về dạng phương trình cơ bản, kết hợp với điều kiện nghiệm để tìm giá trị của tham số m

Lời giải:

9 tháng 8 2019

2 tháng 5 2017

11 tháng 9 2023

Làm sao ra được B?

NV
25 tháng 12 2020

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

4 tháng 6 2021

\(2x^2+\left(2m-1\right)x+m-1=0\)

Thay m=2 vào phương trình ta có

\(2x^2+\left(4-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\)

\(\Delta=3^2-4.2.1\)

\(=9-8\)

\(=1>0\Rightarrow\sqrt{\Delta}=1\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-3-1}{4}=-1\)                          \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)

Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2

b,\(4x_1^2+2x_1x_2+4x_2^2=1\)

\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)

\(\Leftrightarrow4\left(x_1+x_2\right)=1\)

\(\Leftrightarrow4.\left(2m-1\right)^2=1\)

\(\Leftrightarrow2m-1=\dfrac{1}{2}\)

\(\Leftrightarrow2m=\dfrac{3}{2}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

-Chúc bạn học tốt-