Tìm min, max
a) \(y=\sqrt{7-3cos^2x}\)
b) \(y=\frac{2}{1+tan^2x}\)
c) \(y=2sin^2x+\sqrt{3}sin2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)
\(\Rightarrow\frac{8}{3}\le y\le4\)
\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)
\(y_{max}=4\) khi \(cos^2x=1\)
b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)
\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)
\(y_{max}=1\) khi \(sin^23x=1\)
c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)
\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)
\(=-\sqrt{3}cos2x+sin2x+1\)
\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
23.
\(tan^2x\ge0\Rightarrow y\le2\)
\(y_{max}=2\) khi \(tanx=0\)
\(y_{min}\) không tồn tại
24.
\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)
\(\Rightarrow y\ge\frac{1}{2}\)
\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)
\(y_{max}\) ko tồn tại
19.
\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)
\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)
\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)
\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)
21.
\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)
\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin^2x=0\)
\(y_{max}=3\) khi \(sin^2x=1\)
a) \(A=\sqrt{x-2}+\sqrt{6-x}\)
\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)
Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Mà A không âm \(\Leftrightarrow A\ge2\)
Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)
\(\Leftrightarrow A\le\sqrt{8}\)
Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)
Mấy bài còn lại y chang nha
Tick hộ nha
ĐKXĐ: \(x\ge1;y\ge25\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)
Vì x>=1,y>=25 => x-1>=0,y-25>=0
=> D >= 0
Dấu "=" xảy ra <=> x=1,y=25
Vậy MinD=0 khi x=1,y=25
Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)
=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)
Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)
Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:
\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)
=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)
Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)
Dấu "=" xảy ra <=> x=2,y=50
Vậy MaxD = 1/5 khi x=2,y=50
d/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)
\(y_{min}=2\) khi \(cos^2x=1\)
\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)
b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)
\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)
\(y_{min}\) ko tồn tại
c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)
\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)