K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Có: \(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{DB}=\overrightarrow{DB}+\overrightarrow{BC}\)\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\) (dpcm)

8 tháng 7 2018

a, =CD+FA+AB+DE+BC+EF=(CD+DE)+(AB+BC)+FA+EF

=CE+AC+FA+EF= (CE+EF)+AC+FA=CF+AC+FA=(CF+FA)+AC=CA+AC=0

8 tháng 7 2018

b,VP=CD+AE+BF

VT=AD+FC+BE=AC+CD+CB+BF+BA+AE=(AC+CB)+CD+BF+BA+AE

=AB+CD+BF+BA+AE=(AB+BA)+CD+BF+AE=CD+BF+AE=VP(dccm)

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

22 tháng 7 2018

không sao đâu ; mk cam đoan là đúng hoàn toàn

23 tháng 7 2019

Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Bài 3:

Xét \(\Delta AIP\) theo quy tắc trung điểm có:

\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)

Làm tương tự vs các tam giác còn lại

\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)

\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

Cộng vế vs vế

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \\ \Leftrightarrow \overrightarrow {AB}  - \overrightarrow {CB}  = \overrightarrow {AD}  - \overrightarrow {CD} \\ \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AD}  + \overrightarrow {DC} \\ \Leftrightarrow \overrightarrow {AC}  = \overrightarrow {AC} \end{array}\)

(luôn đúng)

b) \(\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Ta có:

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = (\overrightarrow {AB}  + \overrightarrow {BC} ) + (\overrightarrow {CD}  + \overrightarrow {DA} )\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow 0 \end{array}\)

Chú ý khi giải

+) Hiệu hai vecto chung gốc: \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (suy ra từ tổng \(\overrightarrow {AB}  = \overrightarrow {AC}  + \overrightarrow {CB} \))

+) Với 4 điểm A, B, C, D bất kì ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {AA}  = \overrightarrow 0 \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

 \(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 .\end{array}\)

b)

\(\overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {DC} \) và \(\overrightarrow {BC}  - \overrightarrow {BD}  = \overrightarrow {DC} \)

\( \Rightarrow \overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {BC}  - \overrightarrow {BD} \)

17 tháng 5 2017

a)
\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)
\(=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DC}+\overrightarrow{CA}\)
\(=\overrightarrow{AD}+\overrightarrow{DA}=\overrightarrow{0}\).
b)
\(\overrightarrow{v}=\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{BC}+\overrightarrow{DA}\)
\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}\)
\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)