Tìm x,y,z thỏa mãn: a)\(9x^2-8xy+8y^2-28x+28=0\) b)\(x^2+2y^2+5z^2+1=2\left(xy+2yz+z\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a)
pt <=> \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)
<=> \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)
TA luôn có: \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)
b)
pt <=> \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)
<=> \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)
<=> \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)
LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:
DẤU "=" XẢY RA <=> \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)
=> \(x=y=2;z=1\)