K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

\(Q=2x^2-6x\)

\(=2.\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2.\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)

\(=2.\left(x-\frac{3}{2}\right)^2-2.\frac{9}{4}\)

\(=2.\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu = xảy ra khi:

\(2.\left(x-\frac{3}{2}\right)^2=0\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2=0\)

\(\Rightarrow x-\frac{3}{2}=0\)

\(\Rightarrow x=\frac{3}{2}\)

Vậy:..............

27 tháng 8 2021

`A=2x^2-2xy-6x+y^2+10`

`A=x^2-2xy+y^2+x^2-6x+10`

`A=(x-y)^2+x^2-6x+9+1`

`A=(x-y)^2+(x-3)^2+1`

Vì `(x-y)^2+(x-3)^2>=0=>A>=1`

Dấu "=" xảy ra khi `{(x-y=0),(x-3=0):}<=>x=y=3`

25 tháng 9 2021

\(Q=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minQ=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

a) \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\)

\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)

b) \(Q=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)

\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

9 tháng 8 2016

M=x^2+y^2-x+6y+10

M=(x^2-x+1/4)+(y^2+6y+9)+3/4

M=(x-1/2)^2+(y+3)^2+3/4

\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

21 tháng 4 2018

Để 2x2 - 6x - 1 có nghiệm thì : 

2x2 - 6x - 1 = 0 

4x - 6x - 1 = 0 

x( 4 - 6 ) - 1 = 0 

x.  (-2) - 1 = 0 

x.  ( - 3 ) = 0 

x = 0 

Vậy x = 0 là nghiệm của đa thức 2x2 - 6x - 1

21 tháng 4 2018

 cho 2x2-6x-1=0

4x-6x-1=0

x(4-6)-1=0

x.(-2)-1=0

x.(-2)=1

x=-1/2

a) P(x) = 5x5 - 4x2 + 7x + 15

Q(x) = 5x5 - 4x2 + 3x + 8

b) Có: P(x) - Q(x) = 4x + 7

P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)

8 tháng 3 2023

`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`

`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`

`=5x^5 -4x^2 +7x+15`

`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`

`=(4x^5+x^5) +(-2x^2  -2x^2)+3x+8`

`= 5x^5 - 4x^2 +3x+8`

`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`

`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`

`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`

`= 0 + 0 +4x + 7`

`=4x+7`

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

(Nghỉ dịch từ ngày 28/2/2022)Bài 1:a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1Tính M + N; M – N.b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5+ Tính P(x) + Q(x)+ Tính P(x) - Q(x)Bài 2: Tìm x biết:a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của...
Đọc tiếp

(Nghỉ dịch từ ngày 28/2/2022)

Bài 1:

a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1

Tính M + N; M – N.

b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5

+ Tính P(x) + Q(x)

+ Tính P(x) - Q(x)

Bài 2: Tìm x biết:

a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)

Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.

a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

b) Tính P(1) và P(–1).

Bài 4:  Tính nhanh (nếu có thể):

 

Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.

b) Chứng minh AM vuông góc với BC.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.

a) Chứng minh: HB = HC.

b) Tính độ dài AH.

c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).

Chứng minh ΔHDE cân.

d) So sánh HD và HC.

1

Bài 2:

a: \(\left(x-8\right)\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

=>\(4x-3-x-5=30-3x\)

=>3x-8=30-3x

=>6x=38

=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)

Do đó:HD<HC

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)