K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

15 tháng 10 2017

Giải bài 1 trang 62 sgk Đại số 10 | Để học tốt Toán 10

26 tháng 6 2018

⇔ -7 x 2  + 4 = 5x + 5 –  x 2  + x – 1

⇔ -7 x 2  +  x 2  – 5x – x = 5 – 1 – 4

⇔ -6 x 2  – 6x = 0

⇔ - x 2  – x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

⇔ x = 0 hoặc x = -1 (loại)

Vậy phương trình có nghiệm x = 0.

15 tháng 1 2019

a: Ta có: \(3x+5\le4x-9\)

\(\Leftrightarrow-x\le-14\)

\(\Leftrightarrow x\ge14\)

b: Ta có: \(6-2x< 6-x\)

\(\Leftrightarrow-x< 0\)

hay x>0

c: Ta có: \(7\left(x-1\right)+5>-3x\)

\(\Leftrightarrow7x-7+5+3x>0\)

\(\Leftrightarrow10x>2\)

hay \(x>\dfrac{1}{5}\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

NV
22 tháng 2 2021

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

3 tháng 10 2021

câu d x^2+y^2-4x+4y=1

3 tháng 10 2021

a. 3x2 - 4y2 = 18

<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)

b, c, d tương tự nhé

3 tháng 10 2021

b. 19x2 + 28y2 = 2001

<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)

c. x2 = 2y2 - 8y + 3

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)

d. x2 + y2 - 4x + 4y = 1

<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)