Tìm x biết:
a) (4x-1)(x+6)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a/ Đặt x2 = a thì pt thành
a3 + a2 - a = o
<=> a(a2 + a - 1) = 0
b/ x4 - 3x3 + 4x2 - 3x + 1 = 0
<=> (x4 - 2x3 + x2) + (- x3 + 2x2 - x) + (x2 - 2x + 1) = 0
<=> (x - 1)2( x2 - x + 1) = 0
<=> x - 1 = 0
<=> x = 1
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0
TH2 3x-4=0 <=>x=4/3
KL:.....
b) (x+3)(x−1)+2x(x+3)=0.
<=> (x+3)(x-1+2x)=0
TH1: x+3=0 <=> x=-3
TH2 x-1=0 <=> x=1
KL:.....
c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 \)
KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)
KL:....
a) \(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(x^2-4x=4\)
\(\Leftrightarrow\left(x-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
⇔4x2 + 4x + (9 – 4x2) = 15
⇔ 4x2 + 4x + 9 – 4x2 = 15
⇔4x = 15 – 9
⇔x=1,5
b)3x(x – 20012) – x + 20012 = 0
⇔3x(x – 20012) – (x – 20012) = 0
⇔(x – 20012)(3x – 1) = 0
⇔x – 20012 = 0 hay 3x – 1 = 0
⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
( 4x - 1 )( x + 6 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}4x-1>0\\x+6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x>-6\end{cases}}\Leftrightarrow x>\frac{1}{4}\)
2. \(\hept{\begin{cases}4x-1< 0\\x+6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x< -6\end{cases}}\Leftrightarrow x< -6\)
Vậy với x > 1/4 hoặc x < -6 thì ( 4x - 1 )( x + 6 ) > 0
\(\left(4x-1\right)\left(x+6\right)>0\)
Th1 \(\hept{\begin{cases}4x-1>0\\x+6>\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x>-6\end{cases}}}\)
Th2 \(\hept{\begin{cases}4x-1< 0\\x+6< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x< -6\end{cases}}}\)