Cho 5 số nguyên a, b, c, d, e 64 bit đôi một khác nhau. In ra số nhỏ thứ nhì.
Mong mọi người giải giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: Với x là số nguyên ta có |x| và x cùng tính chẵn lẻ.
Áp dụng n/x đó ta có: Tổng \(\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-e\right|+\left|e-a\right|\) cùng tính chẵn lẻ với tổng (a - b) + (b - c) + (c - d) + (d - e) + (e - a) = 0, tức tổng đã cho chẵn.
Trong toán học, các số nguyên a và b được gọi là nguyên tố cùng nhau (tiếng Anh: coprime hoặc relatively prime) nếu chúng có Ước số chung lớn nhất là 1.[1][2] Ví dụ 6 và 35 là nguyên tố cùng nhau vì chúng có ước chung lớn nhất là 1, nhưng 6 và 27 không nguyên tố cùng nhau vì chúng có ước chung lớn nhất là 3. Số 1 là nguyên tố cùng nhau với mọi số nguyên. Nhưng cũng có những trường hợp đặc biệt, hợp số là số nguyên tố cùng nhau. VD: 6 và 25 tuy là hợp số nhưng chúng có Ước chung lớn nhất là 1 nên chúng là những số nguyên tố cùng nhau.[3]
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n,k;
cin >> n >> k;
int a[n];
for (int i=0;i<n;i++)
cin >> a[i];
sort(a,a+n);
cout << a[k-1];
return 0;
}
Gọi số cần tìm là ab
Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8
Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ
=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3
=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6
Vậy số cần tìm là 63
Gọi số cần tìm là a
Ta có : a : 5 dư 3
=> a - 3 \(⋮\) 5(đk : a > 2)
Lại có a : 2 dư 1
=> a - 3 \(⋮\)2 (đk : a > 3)
=> a - 3 : 9 dư 6
Vì a - 3 \(⋮\)5 và a - 3 \(⋮\)2
=> a - 3 \(\in\)BC(5 ; 2)
mà a nhỏ nhất => a - 3 nhỏ nhất
=> a - 3 = BCNN(5 ; 2)
Lại có \(BC\left(5;2\right)=B\left(10\right)\)
=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)
=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)
mà a \(⋮\)9
=> a = 63 (Vì a nhỏ nhất)
Vậy số cần tìm là 63
bạn có thể viết bằng ngôn ngữ C++ đc ko ?