K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

a) 

Vì \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\forall x\)  

\(\Rightarrow x-8< 0\) 

\(x< 8\) 

b) 

Ta có : 

\(3x^2+5\ge5\forall x\)           

\(\Rightarrow7x+9>0\) 

\(7x>-9\) 

\(x>-\frac{9}{7}\)

7 tháng 9 2020

a)\(\frac{x-8}{x^2-2x+3}< 0\)

Vì x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x

nên ta chỉ cần xét x - 8 < 0

x - 8 < 0 => x < 8

Vậy với x < 8 thì \(\frac{x-8}{x^2-2x+3}< 0\)

b)\(\frac{7x+9}{3x^2+5}>0\)

Vì 3x2 + 5 ≥ 5 > 0 ∀ x

nên ta chỉ cần xét 7x + 9 > 0

7x + 9 > 0 => 7x > -9 => x > -9/7

Vậy với x > -9/7 thì \(\frac{7x+9}{3x^2+5}>0\)

22 tháng 1 2022

\(a,4x-6< 7x-12\)

\(\Leftrightarrow6< 3x\Leftrightarrow x>2\)

\(b,\frac{3x-7}{4}\ge2-\frac{x+5}{3}\)

\(\Leftrightarrow3\left(3x-7\right)\ge24-4\left(x+5\right)\)

\(\Leftrightarrow13x\ge25\Leftrightarrow x\ge\frac{25}{13}\)

\(c,\frac{3x-8}{-7}\ge1-\frac{x+2}{-3}\)

\(\Leftrightarrow-3\left(3x-8\right)\ge21+7\left(x+2\right)\)

\(\Leftrightarrow-16x\ge11\)

\(\Leftrightarrow x\le-\frac{11}{16}\)

\(d,-12-8x>3+2x-\left(5-7x\right)\)

\(\Leftrightarrow14>17x\Leftrightarrow x< \frac{14}{17}\)

\(e,-1+\frac{x-1}{-3}\le\frac{x+2}{-9}\)

\(\Leftrightarrow-9-3\left(x-1\right)\le-\left(x+2\right)\)

\(\Leftrightarrow-2x\le4\Leftrightarrow x\ge-2\)

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

2 tháng 2 2016

Hỏi đáp Toán

2 tháng 2 2016

Hỏi đáp Toán

a) Ta có: \(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: \(S_1=\left\{3;-1\right\}\)(1)

Ta có: \(\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: \(S_2=\left\{-3;-1\right\}\)(2)

Từ (1) và (2) suy ra \(S_1\ne S_2\)

hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau

26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình