K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

Có:     \(sin^2\phi=\frac{1}{1+cot^2\phi}=\frac{1}{a^2+1}\),  Từ đây ta được các đẳng thức:

 \(sin2\phi=2sin\phi cos\phi=2cot\phi sin^2\phi=\frac{2a}{a^2+1}\)

\(cos2\phi=1-2sin^2\phi=1-\frac{2}{a^2+1}=\frac{a^2-1}{a^2+1}\)

Xét: \(sin\left(2\phi-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\left(sin2\phi-cos2\phi\right)=\frac{\sqrt{2}}{2}\left(\frac{2a}{a^2+1}-\frac{a^2-1}{a^2+1}\right)=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}\left(a+1\right)}{a^2+1}\)

NV
7 tháng 9 2020

\(cotb=a\Rightarrow\frac{cosb}{sinb}=a\Rightarrow cosb=a.sinb\)

\(sin\left(2b-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\left(sin2b-cos2b\right)\)

\(=\sqrt{2}sinb.cosb-\frac{\sqrt{2}}{2}\left(1-2sin^2b\right)=a\sqrt{2}sin^2b+\sqrt{2}sin^2b-\frac{\sqrt{2}}{2}\)

\(=\left(a\sqrt{2}+\sqrt{2}\right)sin^2b-\frac{\sqrt{2}}{2}=\left(a\sqrt{2}+\sqrt{2}\right).\frac{1}{1+cot^2b}-\frac{\sqrt{2}}{2}\)

\(=\frac{a\sqrt{2}+\sqrt{2}}{1+a^2}-\frac{\sqrt{2}}{2}\)

9 tháng 4 2017

Ta có f'(x) = 2x, suy ra f'(1) = 2

và φ'(x) = 4 + . cos = 4 + . cos, suy ra φ'(1) = 4.

Vậy = = .

AH
Akai Haruma
Giáo viên
12 tháng 7 2017

Câu a)

Đặt \(y=\sqrt{t}\Rightarrow I_1=\int ^{1}_{0}(y-1)^2\sqrt{y}dy=\int ^{1}_{0}(t^2-1)^2td(t^2)\)

\(\Leftrightarrow I_1=2\int^{1}_{0}(t^2-1)^2t^2dt=2\int ^{1}_{0}(t^6-2t^4+t^2)dt\)

\(=2\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^7}{7}-\frac{2t^5}{5}+\frac{t^3}{3} \right )=\frac{16}{105}\)

b) Đặt \(u=\sqrt[3]{z-1}\Rightarrow z=u^3+1\Rightarrow I_2=\int ^{1}_{0}[(u^3+1)^2+1]u^2d(u^3+1)\)

\(\Leftrightarrow I_2=3\int ^{1}_{0}[(u^3+1)^2+1]u^4du=3\int ^{1}_{0}(u^{10}+2u^7+2u^4)du\)

\(=3\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{x^{11}}{11}+\frac{x^8}{4}+\frac{2x^5}{5} \right )=\frac{489}{220}\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2017

c) Ta có:

\(I_3=\int ^{e}_{1}\frac{\sqrt{4+5\ln x}}{x}dx=\int ^{e}_{1}\sqrt{4+5\ln x}d(\ln x)\)

Đặt \(\sqrt{4+5\ln x}=t\Rightarrow I_3=\int ^{3}_{2}td\left (\frac{t^2-4}{5}\right)=\frac{2}{5}\int ^{3}_{2}t^2dt=\frac{38}{15}\)

d)

Xét \(\int ^{\frac{\pi}{2}}_{0}\cos ^5xdx=\int ^{\frac{\pi}{2}}_{0}\cos ^4xd(\sin x)=\int ^{\frac{\pi}{2}}_{0}(1-\sin ^2x)^2d(\sin x)\)

\(=\int ^{1}_{0}(1-t^2)^2dt\)

Xét \(\int ^{\frac{\pi}{2}}_{0}\sin ^5xdx=-\int ^{\frac{\pi}{2}}_{0}\sin ^4xd(\cos x)=-\int ^{\frac{\pi}{2}}_{0}(1-\cos ^2x)^2d(\cos x)=\int ^{1}_{0}(1-t^2)^2dt\)

Do đó \(\int ^{\frac{\pi}{2}}_{0}(\cos ^5x-\sin ^5x)dx=0\)

e)

\(\int \cos ^3x\cos 3xdx=\int \cos 3x\left ( \frac{3\cos x+\cos 3x}{4} \right )dx=\frac{1}{4}\int \cos ^23xdx+\frac{3}{4}\int \cos x\cos 3xdx\)

\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx\)

\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx=\frac{x}{8}+\frac{\sin 6x}{48}+\frac{3\sin 4x}{32}+\frac{3\sin 2x}{16}\)

Suy ra \(\int ^{\pi}_{0}\cos ^3x\cos 3xdx=\frac{\pi}{8}\)

Tham khảo:

undefined

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) =  - \cot x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cot x\) là hàm số lẻ.

b)

   \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

  \(\cot x\)

  \(\sqrt 3 \)

    \(1\)

\(\frac{{\sqrt 3 }}{3}\)

     \(0\)

      \( - \frac{{\sqrt 3 }}{3}\)

    \( - 1\)

\( - \sqrt 3 \)

 c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).

29 tháng 7 2016

Mạch thuần C nên i sớm pha hơn u góc \(\frac{\pi}{2}\)

\(\varphi_u-\varphi_i=-\frac{\pi}{2}\Rightarrow\frac{\pi}{4}-\varphi=-\frac{\pi}{2}\Rightarrow\varphi=\frac{3\pi}{4}\)

19 tháng 11 2015

Trong mạch dao động thì i sớm pha hơn q là \(\frac{\pi}{2}.\)

4 tháng 4 2017

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

29 tháng 5 2016

Đề bài này mình đọc không hỉu gì, bạn xem lại đề nhé hum

29 tháng 5 2016

ò mình nhầm là so với hai đầu mạch điện.tính C