Cho tam giác ABC vuông tại A, đường cao AH.Hạ HE vuông góc AB, HF vuông góc AC
a) C/m: AE.AB=AF. AC
b) C/m: tam giác AEF đồng dạng với tam giác ACB
c) Cho AB=√12, HC=4. Tính AC, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có
góc B chung
=>ΔBHE đồng dạngvơi ΔBAH
b: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
c,d: Xét ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC và CH^2=CF*CA
e: AE*AB=AF*AC=AH^2
=>AE/AC=AF/AB
mà góc EAF chung
nên ΔAEF đồng dạng với ΔACB
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
a) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)